Displaying 1 - 10 of 10
-
Adams, H. H. H., Hibar, D. P., Chouraki, V., Stein, J. L., Nyquist, P., Renteria, M. E., Trompet, S., Arias-Vasquez, A., Seshadri, S., Desrivières, S., Beecham, A. H., Jahanshad, N., Wittfeld, K., Van der Lee, S. J., Abramovic, L., Alhusaini, S., Amin, N., Andersson, M., Arfanakis, K. A., Aribisala, B. S. and 322 moreAdams, H. H. H., Hibar, D. P., Chouraki, V., Stein, J. L., Nyquist, P., Renteria, M. E., Trompet, S., Arias-Vasquez, A., Seshadri, S., Desrivières, S., Beecham, A. H., Jahanshad, N., Wittfeld, K., Van der Lee, S. J., Abramovic, L., Alhusaini, S., Amin, N., Andersson, M., Arfanakis, K. A., Aribisala, B. S., Armstrong, N. J., Athanasiu, L., Axelsson, T., Beiser, A., Bernard, M., Bis, J. C., Blanken, L. M. E., Blanton, S. H., Bohlken, M. M., Boks, M. P., Bralten, J., Brickman, A. M., Carmichael, O., Chakravarty, M. M., Chauhan, G., Chen, Q., Ching, C. R. K., Cuellar-Partida, G., Den Braber, A., Doan, N. T., Ehrlich, S., Filippi, I., Ge, T., Giddaluru, S., Goldman, A. L., Gottesman, R. F., Greven, C. U., Grimm, O., Griswold, M. E., Guadalupe, T., Hass, J., Haukvik, U. K., Hilal, S., Hofer, E., Höhn, D., Holmes, A. J., Hoogman, M., Janowitz, D., Jia, T., Karbalai, N., Kasperaviciute, D., Kim, S., Klein, M., Krämer, B., Lee–, P. H., Liao, J., Liewald, D. C. M., Lopez, L. M., Luciano, M., Macare, C., Marquand, A., Matarin, M., Mather, K. A., Mattheisen, M., Mazoyer, B., McKay, D. R., McWhirter, R., Milaneschi, Y., Muetzel, R. L., Muñoz Maniega, S., Nho, K., Nugent, A. C., Olde Loohuis, L. M., Oosterlaan, J., Papmeyer, M., Pappa, I., Pirpamer, L., Pudas, S., Pütz, B., Rajan, K. B., Ramasamy, A., Richards, J. S., Risacher, S. L., Roiz-Santiañez, R., Rommelse, N., Rose, E. J., Royle, N. A., Rundek, T., Sämann, P. G., Satizabal, C. L., Schmaal, L., Schork, A. J., Shen, L., Shin, J., Shumskaya, E., Smith, A. V., Sprooten, E., Strike, L. T., Teumer, A., Thomson, R., Tordesillas-Gutierrez, D., Toro, R., Trabzuni, D., Vaidya, D., Van der Grond, J., Van der Meer, D., Van Donkelaar, M. M. J., Van Eijk, K. R., VanErp, T. G. M., Van Rooij, D., Walton, E., Westlye, L. T., Whelan, C. D., Windham, B. G., Winkler, A. M., Woldehawariat, G., Wolf, C., Wolfers, T., Xu, B., Yanek, L. R., Yang, J., Zijdenbos, A., Zwiers, M. P., Agartz, I., Aggarwal, N. T., Almasy, L., Ames, D., Amouyel, P., Andreassen, O. A., Arepalli, S., Assareh, A. A., Barral, S., Bastin, M. E., Becker, J. T., Becker, D. M., Bennett, D. A., Blangero, J., Van Bokhoven, H., Boomsma, D. I., Brodaty, H., Brouwer, R. M., Brunner, H. G., Buckner, R. L., Buitelaar, J. K., Bulayeva, K. B., Cahn, W., Calhoun, V. D., Cannon, D. M., Cavalleri, G. L., Chen, C., Cheng, C.-Y., Cichon, S., Cookson, M. R., Corvin, A., Crespo-Facorro, B., Curran, J. E., Czisch, M., Dale, A. M., Davies, G. E., De Geus, E. J. C., De Jager, P. L., De Zubicaray, G. I., Delanty, N., Depondt, C., DeStefano, A., Dillman, A., Djurovic, S., Donohoe, G., Drevets, W. C., Duggirala, R., Dyer, T. D., Erk, S., Espeseth, T., Evans, D. A., Fedko, I. O., Fernández, G., Ferrucci, L., Fisher, S. E., Fleischman, D. A., Ford, I., Foroud, T. M., Fox, P. T., Francks, C., Fukunaga, M., Gibbs, J. R., Glahn, D. C., Gollub, R. L., Göring, H. H. H., Grabe, H. J., Green, R. C., Gruber, O., Guelfi, S., Hansell, N. K., Hardy, J., Hartman, C. A., Hashimoto, R., Hegenscheid, K., Heinz, A., Le Hellard, S., Hernandez, D. G., Heslenfeld, D. J., Ho, B.-C., Hoekstra, P. J., Hoffmann, W., Hofman, A., Holsboer, F., Homuth, G., Hosten, N., Hottenga, J.-J., Hulshoff Pol, H. E., Ikeda, M., Ikram, M. K., Jack Jr, C. R., Jenkinson, M., Johnson, R., Jönsson, E. G., Jukema, J. W., Kahn, R. S., Kanai, R., Kloszewska, I., Knopman, D. S., Kochunov, P., Kwok, J. B., Launer, L. J., Lawrie, S. M., Lemaître, H., Liu, X., Longo, D. L., Longstreth Jr, W. T., Lopez, O. L., Lovestone, S., Martinez, O., Martinot, J.-L., Mattay, V. S., McDonald, C., McIntosh, A. M., McMahon, F. J., McMahon, K. L., Mecocci, P., Melle, I., Meyer-Lindenberg, A., Mohnke, S., Montgomery, G. W., Morris, D. W., Mosley, T. H., Mühleisen, T. W., Müller-Myhsok, B., Nalls, M. A., Nauck, M., Nichols, T. E., Niessen, W. J., Nöthen, M. M., Nyberg, L., Ohi, K., Olvera, R. L., Ophoff, R. A., Pandolfo, M., Paus, T., Pausova, Z., Penninx, B. W. J. H., Pike, G. B., Potkin, S. G., Psaty, B. M., Reppermund, S., Rietschel, M., Roffman, J. L., Romanczuk-Seiferth, N., Rotter, J. I., Ryten, M., Sacco, R. L., Sachdev, P. S., Saykin, A. J., Schmidt, R., Schofield, P. R., Sigursson, S., Simmons, A., Singleton, A., Sisodiya, S. M., Smith, C., Smoller, J. W., Soininen, H., Srikanth, V., Steen, V. M., Stott, D. J., Sussmann, J. E., Thalamuthu, A., Tiemeier, H., Toga, A. W., Traynor, B., Troncoso, J., Turner, J. A., Tzourio, C., Uitterlinden, A. G., Valdés Hernández, M. C., Van der Brug, M., Van der Lugt, A., Van der Wee, N. J. A., Van Duijn, C. M., Van Haren, N. E. M., Van 't Ent, D., Van Tol, M.-J., Vardarajan, B. N., Veltman, D. J., Vernooij, M. W., Völzke, H., Walter, H., Wardlaw, J. M., Wassink, T. H., Weale, M. E., Weinberger, D. R., Weiner, M. W., Wen, W., Westman, E., White, T., Wong, T. Y., Wright, C. B., Zielke, R. H., Zonderman, A. B., the Alzheimer's Disease Neuroimaging Initiative, EPIGEN, IMAGEN, SYS, Deary, I. J., DeCarli, C., Schmidt, H., Martin, N. G., De Craen, A. J. M., Wright, M. J., Gudnason, V., Schumann, G., Fornage, M., Franke, B., Debette, S., Medland, S. E., Ikram, M. A., & Thompson, P. M. (2016). Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nature Neuroscience, 19, 1569-1582. doi:10.1038/nn.4398.
Abstract
Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late
life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438
adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were
also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height.
We found a high genetic correlation with child head circumference (genetic = 0.748), which indicates a similar genetic
background and allowed us to identify four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial
volume were also related to childhood and adult cognitive function, and Parkinson’s disease, and were enriched near genes
involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial
volume and provide genetic support for theories on brain reserve and brain overgrowth.Additional information
http://www.nature.com/neuro/journal/vaop/ncurrent/full/nn.4398.html#supplementa… -
Becker, M., Guadalupe, T., Franke, B., Hibar, D. P., Renteria, M. E., Stein, J. L., Thompson, P. M., Francks, C., Vernes, S. C., & Fisher, S. E. (2016). Early developmental gene enhancers affect subcortical volumes in the adult human brain. Human Brain Mapping, 37(5), 1788-1800. doi:10.1002/hbm.23136.
Abstract
Genome-wide association screens aim to identify common genetic variants contributing to the phenotypic variability of complex traits, such as human height or brain morphology. The identified genetic variants are mostly within noncoding genomic regions and the biology of the genotype–phenotype association typically remains unclear. In this article, we propose a complementary targeted strategy to reveal the genetic underpinnings of variability in subcortical brain volumes, by specifically selecting genomic loci that are experimentally validated forebrain enhancers, active in early embryonic development. We hypothesized that genetic variation within these enhancers may affect the development and ultimately the structure of subcortical brain regions in adults. We tested whether variants in forebrain enhancer regions showed an overall enrichment of association with volumetric variation in subcortical structures of >13,000 healthy adults. We observed significant enrichment of genomic loci that affect the volume of the hippocampus within forebrain enhancers (empirical P = 0.0015), a finding which robustly passed the adjusted threshold for testing of multiple brain phenotypes (cutoff of P < 0.0083 at an alpha of 0.05). In analyses of individual single nucleotide polymorphisms (SNPs), we identified an association upstream of the ID2 gene with rs7588305 and variation in hippocampal volume. This SNP-based association survived multiple-testing correction for the number of SNPs analyzed but not for the number of subcortical structures. Targeting known regulatory regions offers a way to understand the underlying biology that connects genotypes to phenotypes, particularly in the context of neuroimaging genetics. This biology-driven approach generates testable hypotheses regarding the functional biology of identified associations. -
Carrion Castillo, A., van Bergen, E., Vino, A., van Zuijen, T., de Jong, P. F., Francks, C., & Fisher, S. E. (2016). Evaluation of results from genome-wide studies of language and reading in a novel independent dataset. Genes, Brain and Behavior, 15(6), 531-541. doi:10.1111/gbb.12299.
Abstract
Recent genome wide association scans (GWAS) for reading and language abilities have pin-pointed promising new candidate loci. However, the potential contributions of these loci remain to be validated. In the present study, we tested 17 of the most significantly associated single nucleotide polymorphisms (SNPs) from these GWAS studies (p < 10−6 in the original studies) in a new independent population dataset from the Netherlands: known as FIOLA (Familial Influences On Literacy Abilities). This dataset comprised 483 children from 307 nuclear families, plus 505 adults (including parents of participating children), and provided adequate statistical power to detect the effects that were previously reported. The following measures of reading and language performance were collected: word reading fluency, nonword reading fluency, phonological awareness, and rapid automatized naming. Two SNPs (rs12636438, rs7187223) were associated with performance in multivariate and univariate testing, but these did not remain significant after correction for multiple testing. Another SNP (rs482700) was only nominally associated in the multivariate test. For the rest of the SNPs we did not find supportive evidence of association. The findings may reflect differences between our study and the previous investigations in respects such as the language of testing, the exact tests used, and the recruitment criteria. Alternatively, most of the prior reported associations may have been false positives. A larger scale GWAS meta-analysis than those previously performed will likely be required to obtain robust insights into the genomic architecture underlying reading and language.Additional information
gbb12299-sup-0001-AppendixS1.docx.docx -
Franke, B., Stein, J. L., Ripke, S., Anttila, V., Hibar, D. P., Van Hulzen, K. J. E., Arias-Vasquez, A., Smoller, J. W., Nichols, T. E., Neale, M. C., McIntosh, A. M., Lee, P., McMahon, F. J., Meyer-Lindenberg, A., Mattheisen, M., Andreassen, O. A., Gruber, O., Sachdev, P. S., Roiz-Santiañez, R., Saykin, A. J. and 17 moreFranke, B., Stein, J. L., Ripke, S., Anttila, V., Hibar, D. P., Van Hulzen, K. J. E., Arias-Vasquez, A., Smoller, J. W., Nichols, T. E., Neale, M. C., McIntosh, A. M., Lee, P., McMahon, F. J., Meyer-Lindenberg, A., Mattheisen, M., Andreassen, O. A., Gruber, O., Sachdev, P. S., Roiz-Santiañez, R., Saykin, A. J., Ehrlich, S., Mather, K. A., Turner, J. A., Schwarz, E., Thalamuthu, A., Yao, Y., Ho, Y. Y. W., Martin, N. G., Wright, M. J., Guadalupe, T., Fisher, S. E., Francks, C., Schizophrenia Working Group of the Psychiatric Genomics Consortium, ENIGMA Consortium, O’Donovan, M. C., Thompson, P. M., Neale, B. M., Medland, S. E., & Sullivan, P. F. (2016). Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept. Nature Neuroscience, 19, 420-431. doi:10.1038/nn.4228.
Abstract
Schizophrenia is a devastating psychiatric illness with high heritability. Brain structure and function differ, on average, between people with schizophrenia and healthy individuals. As common genetic associations are emerging for both schizophrenia and brain imaging phenotypes, we can now use genome-wide data to investigate genetic overlap. Here we integrated results from common variant studies of schizophrenia (33,636 cases, 43,008 controls) and volumes of several (mainly subcortical) brain structures (11,840 subjects). We did not find evidence of genetic overlap between schizophrenia risk and subcortical volume measures either at the level of common variant genetic architecture or for single genetic markers. These results provide a proof of concept (albeit based on a limited set of structural brain measures) and define a roadmap for future studies investigating the genetic covariance between structural or functional brain phenotypes and risk for psychiatric disordersAdditional information
Franke_etal_2016_supp1.pdf -
Gialluisi, A., Visconti, A., Wilcutt, E. G., Smith, S., Pennington, B., Falchi, M., DeFries, J., Olson, R., Francks, C., & Fisher, S. E. (2016). Investigating the effects of copy number variants on reading and language performance. Journal of Neurodevelopmental Disorders, 8: 17. doi:10.1186/s11689-016-9147-8.
Abstract
Background
Reading and language skills have overlapping genetic bases, most of which are still unknown. Part of the missing heritability may be caused by copy number variants (CNVs).
Methods
In a dataset of children recruited for a history of reading disability (RD, also known as dyslexia) or attention deficit hyperactivity disorder (ADHD) and their siblings, we investigated the effects of CNVs on reading and language performance. First, we called CNVs with PennCNV using signal intensity data from Illumina OmniExpress arrays (~723,000 probes). Then, we computed the correlation between measures of CNV genomic burden and the first principal component (PC) score derived from several continuous reading and language traits, both before and after adjustment for performance IQ. Finally, we screened the genome, probe-by-probe, for association with the PC scores, through two complementary analyses: we tested a binary CNV state assigned for the location of each probe (i.e., CNV+ or CNV−), and we analyzed continuous probe intensity data using FamCNV.
Results
No significant correlation was found between measures of CNV burden and PC scores, and no genome-wide significant associations were detected in probe-by-probe screening. Nominally significant associations were detected (p~10−2–10−3) within CNTN4 (contactin 4) and CTNNA3 (catenin alpha 3). These genes encode cell adhesion molecules with a likely role in neuronal development, and they have been previously implicated in autism and other neurodevelopmental disorders. A further, targeted assessment of candidate CNV regions revealed associations with the PC score (p~0.026–0.045) within CHRNA7 (cholinergic nicotinic receptor alpha 7), which encodes a ligand-gated ion channel and has also been implicated in neurodevelopmental conditions and language impairment. FamCNV analysis detected a region of association (p~10−2–10−4) within a frequent deletion ~6 kb downstream of ZNF737 (zinc finger protein 737, uncharacterized protein), which was also observed in the association analysis using CNV calls.
Conclusions
These data suggest that CNVs do not underlie a substantial proportion of variance in reading and language skills. Analysis of additional, larger datasets is warranted to further assess the potential effects that we found and to increase the power to detect CNV effects on reading and language.Additional information
11689_2016_9147_MOESM1_ESM.docx 11689_2016_9147_MOESM2_ESM.xlsx 11689_2016_9147_MOESM3_ESM.docx -
Kavaklioglu, T., Ajmal, M., Hameed, A., & Francks, C. (2016). Whole exome sequencing for handedness in a large and highly consanguineous family. Neuropsychologia, 93, part B, 342-349. doi:10.1016/j.neuropsychologia.2015.11.010.
Abstract
Pinpointing genes involved in non-right-handedness has the potential to clarify developmental contributions to human brain lateralization. Major-gene models have been considered for human handedness which allow for phenocopy and reduced penetrance, i.e. an imperfect correspondence between genotype and phenotype. However, a recent genome-wide association scan did not detect any common polymorphisms with substantial genetic effects. Previous linkage studies in families have also not yielded significant findings. Genetic heterogeneity and/or polygenicity are therefore indicated, but it remains possible that relatively rare, or even unique, major-genetic effects may be detectable in certain extended families with many non-right-handed members. Here we applied whole exome sequencing to 17 members from a single, large consanguineous family from Pakistan. Multipoint linkage analysis across all autosomes did not yield clear candidate genomic regions for involvement in the trait and single-point analysis of exomic variation did not yield clear candidate mutations/genes. Any genetic contribution to handedness in this unusual family is therefore likely to have a complex etiology, as at the population level. -
Berrettini, W., Yuan, X., Tozzi, F., Song, K., Francks, C., Chilcoat, H., Waterworth, D., Muglia, P., & Mooser, V. (2008). Alpha-5/alpha-3 nicotinic receptor subunit alleles increase risk for heavy smoking. Molecular Psychiatry, 13, 368-373. doi:10.1038/sj.mp.4002154.
Abstract
Twin studies indicate that additive genetic effects explain most of the variance in nicotine dependence (ND), a construct emphasizing habitual heavy smoking despite adverse consequences, tolerance and withdrawal. To detect ND alleles, we assessed cigarettes per day (CPD) regularly smoked, in two European populations via whole genome association techniques. In these approximately 7500 persons, a common haplotype in the CHRNA3-CHRNA5 nicotinic receptor subunit gene cluster was associated with CPD (nominal P=6.9 x 10(-5)). In a third set of European populations (n= approximately 7500) which had been genotyped for approximately 6000 SNPs in approximately 2000 genes, an allele in the same haplotype was associated with CPD (nominal P=2.6 x 10(-6)). These results (in three independent populations of European origin, totaling approximately 15 000 individuals) suggest that a common haplotype in the CHRNA5/CHRNA3 gene cluster on chromosome 15 contains alleles, which predispose to ND.Additional information
Suppl.Material.doc -
Need, A. C., Attix, D. K., McEvoy, J. M., Cirulli, E. T., Linney, K. N., Wagoner, A. P., Gumbs, C. E., Giegling, I., Möller, H.-J., Francks, C., Muglia, P., Roses, A., Gibson, G., Weale, M. E., Rujescu, D., & Goldstein, D. B. (2008). Failure to replicate effect of Kibra on human memory in two large cohorts of European origin. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 147B, 667-668. doi:10.1002/ajmg.b.30658.
Abstract
It was recently suggested that the Kibra polymorphism rs17070145 has a strong effect on multiple episodic memory tasks in humans. We attempted to replicate this using two cohorts of European genetic origin (n = 319 and n = 365). We found no association with either the original SNP or a set of tagging SNPs in the Kibra gene with multiple verbal memory tasks, including one that was an exact replication (Auditory Verbal Learning Task, AVLT). These results suggest that Kibra does not have a strong and general effect on human memory.Additional information
SupplementaryMethodsIAmJMedGen.doc -
Stefansson, H., Rujescu, D., Cichon, S., Pietilainen, O. P. H., Ingason, A., Steinberg, S., Fossdal, R., Sigurdsson, E., Sigmundsson, T., Buizer-Voskamp, J. E., Hansen, T., Jakobsen, K. D., Muglia, P., Francks, C., Matthews, P. M., Gylfason, A., Halldorsson, B. V., Gudbjartsson, D., Thorgeirsson, T. E., Sigurdsson, A. and 55 moreStefansson, H., Rujescu, D., Cichon, S., Pietilainen, O. P. H., Ingason, A., Steinberg, S., Fossdal, R., Sigurdsson, E., Sigmundsson, T., Buizer-Voskamp, J. E., Hansen, T., Jakobsen, K. D., Muglia, P., Francks, C., Matthews, P. M., Gylfason, A., Halldorsson, B. V., Gudbjartsson, D., Thorgeirsson, T. E., Sigurdsson, A., Jonasdottir, A., Jonasdottir, A., Bjornsson, A., Mattiasdottir, S., Blondal, T., Haraldsson, M., Magnusdottir, B. B., Giegling, I., Möller, H.-J., Hartmann, A., Shianna, K. V., Ge, D., Need, A. C., Crombie, C., Fraser, G., Walker, N., Lonnqvist, J., Suvisaari, J., Tuulio-Henriksson, A., Paunio, T., Toulopoulou, T., Bramon, E., Forti, M. D., Murray, R., Ruggeri, M., Vassos, E., Tosato, S., Walshe, M., Li, T., Vasilescu, C., Muhleisen, T. W., Wang, A. G., Ullum, H., Djurovic, S., Melle, I., Olesen, J., Kiemeney, L. A., Franke, B., Sabatti, C., Freimer, N. B., Gulcher, J. R., Thorsteinsdottir, U., Kong, A., Andreassen, O. A., Ophoff, R. A., Georgi, A., Rietschel, M., Werge, T., Petursson, H., Goldstein, D. B., Nothen, M. M., Peltonen, L., Collier, D. A., St. Clair, D., & Stefansson, K. (2008). Large recurrent microdeletions associated with schizophrenia [Letter to Nature]. Nature, 455(7210), 232-236. doi:10.1038/nature07229.
Abstract
Reduced fecundity, associated with severe mental disorders, places negative selection pressure on risk alleles and may explain, in part, why common variants have not been found that confer risk of disorders such as autism, schizophrenia and mental retardation. Thus, rare variants may account for a larger fraction of the overall genetic risk than previously assumed. In contrast to rare single nucleotide mutations, rare copy number variations (CNVs) can be detected using genome-wide single nucleotide polymorphism arrays. This has led to the identification of CNVs associated with mental retardation and autism. In a genome-wide search for CNVs associating with schizophrenia, we used a population-based sample to identify de novo CNVs by analysing 9,878 transmissions from parents to offspring. The 66 de novo CNVs identified were tested for association in a sample of 1,433 schizophrenia cases and 33,250 controls. Three deletions at 1q21.1, 15q11.2 and 15q13.3 showing nominal association with schizophrenia in the first sample (phase I) were followed up in a second sample of 3,285 cases and 7,951 controls (phase II). All three deletions significantly associate with schizophrenia and related psychoses in the combined sample. The identification of these rare, recurrent risk variants, having occurred independently in multiple founders and being subject to negative selection, is important in itself. CNV analysis may also point the way to the identification of additional and more prevalent risk variants in genes and pathways involved in schizophrenia.Additional information
Suppl.Material.pdf -
Gayán, J., Willcutt, E. G., Fisher, S. E., Francks, C., Cardon, L. R., Olson, R. K., Pennington, B. F., Smith, S., Monaco, A. P., & DeFries, J. C. (2005). Bivariate linkage scan for reading disability and attention-deficit/hyperactivity disorder localizes pleiotropic loci. Journal of Child Psychology and Psychiatry, 46(10), 1045-1056. doi:10.1111/j.1469-7610.2005.01447.x.
Abstract
BACKGROUND: There is a growing interest in the study of the genetic origins of comorbidity, a direct consequence of the recent findings of genetic loci that are seemingly linked to more than one disorder. There are several potential causes for these shared regions of linkage, but one possibility is that these loci may harbor genes with manifold effects. The established genetic correlation between reading disability (RD) and attention-deficit/hyperactivity disorder (ADHD) suggests that their comorbidity is due at least in part to genes that have an impact on several phenotypes, a phenomenon known as pleiotropy. METHODS: We employ a bivariate linkage test for selected samples that could help identify these pleiotropic loci. This linkage method was employed to carry out the first bivariate genome-wide analysis for RD and ADHD, in a selected sample of 182 sibling pairs. RESULTS: We found evidence for a novel locus at chromosome 14q32 (multipoint LOD=2.5; singlepoint LOD=3.9) with a pleiotropic effect on RD and ADHD. Another locus at 13q32, which had been implicated in previous univariate scans of RD and ADHD, seems to have a pleiotropic effect on both disorders. 20q11 is also suggested as a pleiotropic locus. Other loci previously implicated in RD or ADHD did not exhibit bivariate linkage. CONCLUSIONS: Some loci are suggested as having pleiotropic effects on RD and ADHD, while others might have unique effects. These results highlight the utility of this bivariate linkage method to study pleiotropy.
Share this page