Displaying 1 - 13 of 13
-
Pu, Y., Francks, C., & Kong, X. (2025). Global brain asymmetry. Trends in Cognitive Sciences, 29(2), 114-117. doi:10.1016/j.tics.2024.10.008.
Abstract
Lateralization is a defining characteristic of the human brain, often studied through localized approaches that focus on interhemispheric differences between homologous pairs of regions. It is also important to emphasize an integrative perspective of global brain asymmetry, in which hemispheric differences are understood through global patterns across the entire brain. -
Rivera-Olvera, A., Houwing, D. J., Ellegood, J., Masifi, S., Martina, S., Silberfeld, A., Pourquie, O., Lerch, J. P., Francks, C., Homberg, J. R., Van Heukelum, S., & Grandjean, J. (2025). The universe is asymmetric, the mouse brain too. Molecular Psychiatry, 30, 489-496. doi:10.1038/s41380-024-02687-2.
Abstract
Hemispheric brain asymmetry is a basic organizational principle of the human brain and has been implicated in various psychiatric conditions, including autism spectrum disorder. Brain asymmetry is not a uniquely human feature and is observed in other species such as the mouse. Yet, asymmetry patterns are generally nuanced, and substantial sample sizes are required to detect these patterns. In this pre-registered study, we use a mouse dataset from the Province of Ontario Neurodevelopmental Network, which comprises structural MRI data from over 2000 mice, including genetic models for autism spectrum disorder, to reveal the scope and magnitude of hemispheric asymmetry in the mouse. Our findings demonstrate the presence of robust hemispheric asymmetry in the mouse brain, such as larger right hemispheric volumes towards the anterior pole and larger left hemispheric volumes toward the posterior pole, opposite to what has been shown in humans. This suggests the existence of species-specific traits. Further clustering analysis identified distinct asymmetry patterns in autism spectrum disorder models, a phenomenon that is also seen in atypically developing participants. Our study shows potential for the use of mouse models in studying the biological bases of typical and atypical brain asymmetry but also warrants caution as asymmetry patterns seem to differ between humans and mice. -
Sha, Z., & Francks, C. (2025). Large-scale genetic mapping for human brain asymmetry. In C. Papagno, & P. Corballis (
Eds. ), Handbook of Clinical Neurology: Cerebral Asymmetries (pp. 241-254). Amsterdam: Elsevier.Abstract
Left-right asymmetry is an important aspect of human brain organization for functions including language and hand motor control, which can be altered in some psychiatric traits. The last five years have seen rapid advances in the identification of specific genes linked to variation in asymmetry of the human brain and/or handedness. These advances have been driven by a new generation of large-scale genome-wide association studies, carried out in samples ranging from roughly 16,000 to over 1.5 million participants. The implicated genes tend to be most active in the embryonic and fetal brain, consistent with early developmental patterning of brain asymmetry. Several of the genes encode components of microtubules, or other microtubule-associated proteins. Microtubules are key elements of the internal cellular skeleton (cytoskeleton). A major challenge remains to understand how these genes affect, or even induce, the brain’s left-right axis. Several of the implicated genes have also been associated with psychiatric or neurological disorders, and polygenic dispositions to autism and schizophrenia have been associated with structural brain asymmetry. Knowledge of developmental mechanisms that lead to hemispheric specialization may ultimately help to define etiologic subtypes of brain disorders. -
Adams, H. H. H., Hibar, D. P., Chouraki, V., Stein, J. L., Nyquist, P., Renteria, M. E., Trompet, S., Arias-Vasquez, A., Seshadri, S., Desrivières, S., Beecham, A. H., Jahanshad, N., Wittfeld, K., Van der Lee, S. J., Abramovic, L., Alhusaini, S., Amin, N., Andersson, M., Arfanakis, K. A., Aribisala, B. S. and 322 moreAdams, H. H. H., Hibar, D. P., Chouraki, V., Stein, J. L., Nyquist, P., Renteria, M. E., Trompet, S., Arias-Vasquez, A., Seshadri, S., Desrivières, S., Beecham, A. H., Jahanshad, N., Wittfeld, K., Van der Lee, S. J., Abramovic, L., Alhusaini, S., Amin, N., Andersson, M., Arfanakis, K. A., Aribisala, B. S., Armstrong, N. J., Athanasiu, L., Axelsson, T., Beiser, A., Bernard, M., Bis, J. C., Blanken, L. M. E., Blanton, S. H., Bohlken, M. M., Boks, M. P., Bralten, J., Brickman, A. M., Carmichael, O., Chakravarty, M. M., Chauhan, G., Chen, Q., Ching, C. R. K., Cuellar-Partida, G., Den Braber, A., Doan, N. T., Ehrlich, S., Filippi, I., Ge, T., Giddaluru, S., Goldman, A. L., Gottesman, R. F., Greven, C. U., Grimm, O., Griswold, M. E., Guadalupe, T., Hass, J., Haukvik, U. K., Hilal, S., Hofer, E., Höhn, D., Holmes, A. J., Hoogman, M., Janowitz, D., Jia, T., Karbalai, N., Kasperaviciute, D., Kim, S., Klein, M., Krämer, B., Lee–, P. H., Liao, J., Liewald, D. C. M., Lopez, L. M., Luciano, M., Macare, C., Marquand, A., Matarin, M., Mather, K. A., Mattheisen, M., Mazoyer, B., McKay, D. R., McWhirter, R., Milaneschi, Y., Muetzel, R. L., Muñoz Maniega, S., Nho, K., Nugent, A. C., Olde Loohuis, L. M., Oosterlaan, J., Papmeyer, M., Pappa, I., Pirpamer, L., Pudas, S., Pütz, B., Rajan, K. B., Ramasamy, A., Richards, J. S., Risacher, S. L., Roiz-Santiañez, R., Rommelse, N., Rose, E. J., Royle, N. A., Rundek, T., Sämann, P. G., Satizabal, C. L., Schmaal, L., Schork, A. J., Shen, L., Shin, J., Shumskaya, E., Smith, A. V., Sprooten, E., Strike, L. T., Teumer, A., Thomson, R., Tordesillas-Gutierrez, D., Toro, R., Trabzuni, D., Vaidya, D., Van der Grond, J., Van der Meer, D., Van Donkelaar, M. M. J., Van Eijk, K. R., VanErp, T. G. M., Van Rooij, D., Walton, E., Westlye, L. T., Whelan, C. D., Windham, B. G., Winkler, A. M., Woldehawariat, G., Wolf, C., Wolfers, T., Xu, B., Yanek, L. R., Yang, J., Zijdenbos, A., Zwiers, M. P., Agartz, I., Aggarwal, N. T., Almasy, L., Ames, D., Amouyel, P., Andreassen, O. A., Arepalli, S., Assareh, A. A., Barral, S., Bastin, M. E., Becker, J. T., Becker, D. M., Bennett, D. A., Blangero, J., Van Bokhoven, H., Boomsma, D. I., Brodaty, H., Brouwer, R. M., Brunner, H. G., Buckner, R. L., Buitelaar, J. K., Bulayeva, K. B., Cahn, W., Calhoun, V. D., Cannon, D. M., Cavalleri, G. L., Chen, C., Cheng, C.-Y., Cichon, S., Cookson, M. R., Corvin, A., Crespo-Facorro, B., Curran, J. E., Czisch, M., Dale, A. M., Davies, G. E., De Geus, E. J. C., De Jager, P. L., De Zubicaray, G. I., Delanty, N., Depondt, C., DeStefano, A., Dillman, A., Djurovic, S., Donohoe, G., Drevets, W. C., Duggirala, R., Dyer, T. D., Erk, S., Espeseth, T., Evans, D. A., Fedko, I. O., Fernández, G., Ferrucci, L., Fisher, S. E., Fleischman, D. A., Ford, I., Foroud, T. M., Fox, P. T., Francks, C., Fukunaga, M., Gibbs, J. R., Glahn, D. C., Gollub, R. L., Göring, H. H. H., Grabe, H. J., Green, R. C., Gruber, O., Guelfi, S., Hansell, N. K., Hardy, J., Hartman, C. A., Hashimoto, R., Hegenscheid, K., Heinz, A., Le Hellard, S., Hernandez, D. G., Heslenfeld, D. J., Ho, B.-C., Hoekstra, P. J., Hoffmann, W., Hofman, A., Holsboer, F., Homuth, G., Hosten, N., Hottenga, J.-J., Hulshoff Pol, H. E., Ikeda, M., Ikram, M. K., Jack Jr, C. R., Jenkinson, M., Johnson, R., Jönsson, E. G., Jukema, J. W., Kahn, R. S., Kanai, R., Kloszewska, I., Knopman, D. S., Kochunov, P., Kwok, J. B., Launer, L. J., Lawrie, S. M., Lemaître, H., Liu, X., Longo, D. L., Longstreth Jr, W. T., Lopez, O. L., Lovestone, S., Martinez, O., Martinot, J.-L., Mattay, V. S., McDonald, C., McIntosh, A. M., McMahon, F. J., McMahon, K. L., Mecocci, P., Melle, I., Meyer-Lindenberg, A., Mohnke, S., Montgomery, G. W., Morris, D. W., Mosley, T. H., Mühleisen, T. W., Müller-Myhsok, B., Nalls, M. A., Nauck, M., Nichols, T. E., Niessen, W. J., Nöthen, M. M., Nyberg, L., Ohi, K., Olvera, R. L., Ophoff, R. A., Pandolfo, M., Paus, T., Pausova, Z., Penninx, B. W. J. H., Pike, G. B., Potkin, S. G., Psaty, B. M., Reppermund, S., Rietschel, M., Roffman, J. L., Romanczuk-Seiferth, N., Rotter, J. I., Ryten, M., Sacco, R. L., Sachdev, P. S., Saykin, A. J., Schmidt, R., Schofield, P. R., Sigursson, S., Simmons, A., Singleton, A., Sisodiya, S. M., Smith, C., Smoller, J. W., Soininen, H., Srikanth, V., Steen, V. M., Stott, D. J., Sussmann, J. E., Thalamuthu, A., Tiemeier, H., Toga, A. W., Traynor, B., Troncoso, J., Turner, J. A., Tzourio, C., Uitterlinden, A. G., Valdés Hernández, M. C., Van der Brug, M., Van der Lugt, A., Van der Wee, N. J. A., Van Duijn, C. M., Van Haren, N. E. M., Van 't Ent, D., Van Tol, M.-J., Vardarajan, B. N., Veltman, D. J., Vernooij, M. W., Völzke, H., Walter, H., Wardlaw, J. M., Wassink, T. H., Weale, M. E., Weinberger, D. R., Weiner, M. W., Wen, W., Westman, E., White, T., Wong, T. Y., Wright, C. B., Zielke, R. H., Zonderman, A. B., the Alzheimer's Disease Neuroimaging Initiative, EPIGEN, IMAGEN, SYS, Deary, I. J., DeCarli, C., Schmidt, H., Martin, N. G., De Craen, A. J. M., Wright, M. J., Gudnason, V., Schumann, G., Fornage, M., Franke, B., Debette, S., Medland, S. E., Ikram, M. A., & Thompson, P. M. (2016). Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nature Neuroscience, 19, 1569-1582. doi:10.1038/nn.4398.
Abstract
Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late
life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438
adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were
also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height.
We found a high genetic correlation with child head circumference (genetic = 0.748), which indicates a similar genetic
background and allowed us to identify four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial
volume were also related to childhood and adult cognitive function, and Parkinson’s disease, and were enriched near genes
involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial
volume and provide genetic support for theories on brain reserve and brain overgrowth.Additional information
http://www.nature.com/neuro/journal/vaop/ncurrent/full/nn.4398.html#supplementa… -
Becker, M., Guadalupe, T., Franke, B., Hibar, D. P., Renteria, M. E., Stein, J. L., Thompson, P. M., Francks, C., Vernes, S. C., & Fisher, S. E. (2016). Early developmental gene enhancers affect subcortical volumes in the adult human brain. Human Brain Mapping, 37(5), 1788-1800. doi:10.1002/hbm.23136.
Abstract
Genome-wide association screens aim to identify common genetic variants contributing to the phenotypic variability of complex traits, such as human height or brain morphology. The identified genetic variants are mostly within noncoding genomic regions and the biology of the genotype–phenotype association typically remains unclear. In this article, we propose a complementary targeted strategy to reveal the genetic underpinnings of variability in subcortical brain volumes, by specifically selecting genomic loci that are experimentally validated forebrain enhancers, active in early embryonic development. We hypothesized that genetic variation within these enhancers may affect the development and ultimately the structure of subcortical brain regions in adults. We tested whether variants in forebrain enhancer regions showed an overall enrichment of association with volumetric variation in subcortical structures of >13,000 healthy adults. We observed significant enrichment of genomic loci that affect the volume of the hippocampus within forebrain enhancers (empirical P = 0.0015), a finding which robustly passed the adjusted threshold for testing of multiple brain phenotypes (cutoff of P < 0.0083 at an alpha of 0.05). In analyses of individual single nucleotide polymorphisms (SNPs), we identified an association upstream of the ID2 gene with rs7588305 and variation in hippocampal volume. This SNP-based association survived multiple-testing correction for the number of SNPs analyzed but not for the number of subcortical structures. Targeting known regulatory regions offers a way to understand the underlying biology that connects genotypes to phenotypes, particularly in the context of neuroimaging genetics. This biology-driven approach generates testable hypotheses regarding the functional biology of identified associations. -
Carrion Castillo, A., van Bergen, E., Vino, A., van Zuijen, T., de Jong, P. F., Francks, C., & Fisher, S. E. (2016). Evaluation of results from genome-wide studies of language and reading in a novel independent dataset. Genes, Brain and Behavior, 15(6), 531-541. doi:10.1111/gbb.12299.
Abstract
Recent genome wide association scans (GWAS) for reading and language abilities have pin-pointed promising new candidate loci. However, the potential contributions of these loci remain to be validated. In the present study, we tested 17 of the most significantly associated single nucleotide polymorphisms (SNPs) from these GWAS studies (p < 10−6 in the original studies) in a new independent population dataset from the Netherlands: known as FIOLA (Familial Influences On Literacy Abilities). This dataset comprised 483 children from 307 nuclear families, plus 505 adults (including parents of participating children), and provided adequate statistical power to detect the effects that were previously reported. The following measures of reading and language performance were collected: word reading fluency, nonword reading fluency, phonological awareness, and rapid automatized naming. Two SNPs (rs12636438, rs7187223) were associated with performance in multivariate and univariate testing, but these did not remain significant after correction for multiple testing. Another SNP (rs482700) was only nominally associated in the multivariate test. For the rest of the SNPs we did not find supportive evidence of association. The findings may reflect differences between our study and the previous investigations in respects such as the language of testing, the exact tests used, and the recruitment criteria. Alternatively, most of the prior reported associations may have been false positives. A larger scale GWAS meta-analysis than those previously performed will likely be required to obtain robust insights into the genomic architecture underlying reading and language.Additional information
gbb12299-sup-0001-AppendixS1.docx.docx -
Franke, B., Stein, J. L., Ripke, S., Anttila, V., Hibar, D. P., Van Hulzen, K. J. E., Arias-Vasquez, A., Smoller, J. W., Nichols, T. E., Neale, M. C., McIntosh, A. M., Lee, P., McMahon, F. J., Meyer-Lindenberg, A., Mattheisen, M., Andreassen, O. A., Gruber, O., Sachdev, P. S., Roiz-Santiañez, R., Saykin, A. J. and 17 moreFranke, B., Stein, J. L., Ripke, S., Anttila, V., Hibar, D. P., Van Hulzen, K. J. E., Arias-Vasquez, A., Smoller, J. W., Nichols, T. E., Neale, M. C., McIntosh, A. M., Lee, P., McMahon, F. J., Meyer-Lindenberg, A., Mattheisen, M., Andreassen, O. A., Gruber, O., Sachdev, P. S., Roiz-Santiañez, R., Saykin, A. J., Ehrlich, S., Mather, K. A., Turner, J. A., Schwarz, E., Thalamuthu, A., Yao, Y., Ho, Y. Y. W., Martin, N. G., Wright, M. J., Guadalupe, T., Fisher, S. E., Francks, C., Schizophrenia Working Group of the Psychiatric Genomics Consortium, ENIGMA Consortium, O’Donovan, M. C., Thompson, P. M., Neale, B. M., Medland, S. E., & Sullivan, P. F. (2016). Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept. Nature Neuroscience, 19, 420-431. doi:10.1038/nn.4228.
Abstract
Schizophrenia is a devastating psychiatric illness with high heritability. Brain structure and function differ, on average, between people with schizophrenia and healthy individuals. As common genetic associations are emerging for both schizophrenia and brain imaging phenotypes, we can now use genome-wide data to investigate genetic overlap. Here we integrated results from common variant studies of schizophrenia (33,636 cases, 43,008 controls) and volumes of several (mainly subcortical) brain structures (11,840 subjects). We did not find evidence of genetic overlap between schizophrenia risk and subcortical volume measures either at the level of common variant genetic architecture or for single genetic markers. These results provide a proof of concept (albeit based on a limited set of structural brain measures) and define a roadmap for future studies investigating the genetic covariance between structural or functional brain phenotypes and risk for psychiatric disordersAdditional information
Franke_etal_2016_supp1.pdf -
Gialluisi, A., Visconti, A., Wilcutt, E. G., Smith, S., Pennington, B., Falchi, M., DeFries, J., Olson, R., Francks, C., & Fisher, S. E. (2016). Investigating the effects of copy number variants on reading and language performance. Journal of Neurodevelopmental Disorders, 8: 17. doi:10.1186/s11689-016-9147-8.
Abstract
Background
Reading and language skills have overlapping genetic bases, most of which are still unknown. Part of the missing heritability may be caused by copy number variants (CNVs).
Methods
In a dataset of children recruited for a history of reading disability (RD, also known as dyslexia) or attention deficit hyperactivity disorder (ADHD) and their siblings, we investigated the effects of CNVs on reading and language performance. First, we called CNVs with PennCNV using signal intensity data from Illumina OmniExpress arrays (~723,000 probes). Then, we computed the correlation between measures of CNV genomic burden and the first principal component (PC) score derived from several continuous reading and language traits, both before and after adjustment for performance IQ. Finally, we screened the genome, probe-by-probe, for association with the PC scores, through two complementary analyses: we tested a binary CNV state assigned for the location of each probe (i.e., CNV+ or CNV−), and we analyzed continuous probe intensity data using FamCNV.
Results
No significant correlation was found between measures of CNV burden and PC scores, and no genome-wide significant associations were detected in probe-by-probe screening. Nominally significant associations were detected (p~10−2–10−3) within CNTN4 (contactin 4) and CTNNA3 (catenin alpha 3). These genes encode cell adhesion molecules with a likely role in neuronal development, and they have been previously implicated in autism and other neurodevelopmental disorders. A further, targeted assessment of candidate CNV regions revealed associations with the PC score (p~0.026–0.045) within CHRNA7 (cholinergic nicotinic receptor alpha 7), which encodes a ligand-gated ion channel and has also been implicated in neurodevelopmental conditions and language impairment. FamCNV analysis detected a region of association (p~10−2–10−4) within a frequent deletion ~6 kb downstream of ZNF737 (zinc finger protein 737, uncharacterized protein), which was also observed in the association analysis using CNV calls.
Conclusions
These data suggest that CNVs do not underlie a substantial proportion of variance in reading and language skills. Analysis of additional, larger datasets is warranted to further assess the potential effects that we found and to increase the power to detect CNV effects on reading and language.Additional information
11689_2016_9147_MOESM1_ESM.docx 11689_2016_9147_MOESM2_ESM.xlsx 11689_2016_9147_MOESM3_ESM.docx -
Kavaklioglu, T., Ajmal, M., Hameed, A., & Francks, C. (2016). Whole exome sequencing for handedness in a large and highly consanguineous family. Neuropsychologia, 93, part B, 342-349. doi:10.1016/j.neuropsychologia.2015.11.010.
Abstract
Pinpointing genes involved in non-right-handedness has the potential to clarify developmental contributions to human brain lateralization. Major-gene models have been considered for human handedness which allow for phenocopy and reduced penetrance, i.e. an imperfect correspondence between genotype and phenotype. However, a recent genome-wide association scan did not detect any common polymorphisms with substantial genetic effects. Previous linkage studies in families have also not yielded significant findings. Genetic heterogeneity and/or polygenicity are therefore indicated, but it remains possible that relatively rare, or even unique, major-genetic effects may be detectable in certain extended families with many non-right-handed members. Here we applied whole exome sequencing to 17 members from a single, large consanguineous family from Pakistan. Multipoint linkage analysis across all autosomes did not yield clear candidate genomic regions for involvement in the trait and single-point analysis of exomic variation did not yield clear candidate mutations/genes. Any genetic contribution to handedness in this unusual family is therefore likely to have a complex etiology, as at the population level. -
Francks, C., Tozzi, F., Farmer, A., Vincent, J. B., Rujescu, D., St Clair, D., & Muglia, P. (2010). Population-based linkage analysis of schizophrenia and bipolar case-control cohorts identifies a potential susceptibility locus on 19q13. Molecular Psychiatry, 15, 319-325. doi:10.1038/mp.2008.100.
Abstract
Population-based linkage analysis is a new method for analysing genomewide single nucleotide polymorphism (SNP) genotype data in case-control samples, which does not assume a common disease, common variant model. The genome is scanned for extended segments that show increased identity-by-descent sharing within case-case pairs, relative to case-control or control-control pairs. The method is robust to allelic heterogeneity and is suited to mapping genes which contain multiple, rare susceptibility variants of relatively high penetrance. We analysed genomewide SNP datasets for two schizophrenia case-control cohorts, collected in Aberdeen (461 cases, 459 controls) and Munich (429 cases, 428 controls). Population-based linkage testing must be performed within homogeneous samples and it was therefore necessary to analyse the cohorts separately. Each cohort was first subjected to several procedures to improve genetic homogeneity, including identity-by-state outlier detection and multidimensional scaling analysis. When testing only cases who reported a positive family history of major psychiatric disease, consistent with a model of strongly penetrant susceptibility alleles, we saw a distinct peak on chromosome 19q in both cohorts that appeared in meta-analysis (P=0.000016) to surpass the traditional level for genomewide significance for complex trait linkage. The linkage signal was also present in a third case-control sample for familial bipolar disorder, such that meta-analysing all three datasets together yielded a linkage P=0.0000026. A model of rare but highly penetrant disease alleles may be more applicable to some instances of major psychiatric diseases than the common disease common variant model, and we therefore suggest that other genome scan datasets are analysed with this new, complementary method.Additional information
http://www.nature.com/mp/journal/v15/n3/suppinfo/mp2008100s1.html?url=/mp/journ… -
Ingason, A., Giegling, I., Cichon, S., Hansen, T., Rasmussen, H. B., Nielsen, J., Jurgens, G., Muglia, P., Hartmann, A. M., Strengman, E., Vasilescu, C., Muhleisen, T. W., Djurovic, S., Melle, I., Lerer, B., Möller, H.-J., Francks, C., Pietilainen, O. P. H., Lonnqvist, J., Suvisaari, J. and 20 moreIngason, A., Giegling, I., Cichon, S., Hansen, T., Rasmussen, H. B., Nielsen, J., Jurgens, G., Muglia, P., Hartmann, A. M., Strengman, E., Vasilescu, C., Muhleisen, T. W., Djurovic, S., Melle, I., Lerer, B., Möller, H.-J., Francks, C., Pietilainen, O. P. H., Lonnqvist, J., Suvisaari, J., Tuulio-Henriksson, A., Walshe, M., Vassos, E., Di Forti, M., Murray, R., Bonetto, C., Tosato, S., Cantor, R. M., Rietschel, M., Craddock, N., Owen, M. J., Andreassen, O. A., Nothen, M. M., Peltonen, L., St. Clair, D., Ophoff, R. A., O’Donovan, M. C., Collier, D. A., Werge, T., & Rujescu, D. (2010). A large replication study and meta-analysis in European samples provides further support for association of AHI1 markers with schizophrenia. Human Molecular Genetics, 19(7), 1379-1386. doi:10.1093/hmg/ddq009.
Abstract
The Abelson helper integration site 1 (AHI1) gene locus on chromosome 6q23 is among a group of candidate loci for schizophrenia susceptibility that were initially identified by linkage followed by linkage disequilibrium mapping, and subsequent replication of the association in an independent sample. Here, we present results of a replication study of AHI1 locus markers, previously implicated in schizophrenia, in a large European sample (in total 3907 affected and 7429 controls). Furthermore, we perform a meta-analysis of the implicated markers in 4496 affected and 18,920 controls. Both the replication study of new samples and the meta-analysis show evidence for significant overrepresentation of all tested alleles in patients compared with controls (meta-analysis; P = 8.2 x 10(-5)-1.7 x 10(-3), common OR = 1.09-1.11). The region contains two genes, AHI1 and C6orf217, and both genes-as well as the neighbouring phosphodiesterase 7B (PDE7B)-may be considered candidates for involvement in the genetic aetiology of schizophrenia.Additional information
http://hmg.oxfordjournals.org/content/19/7/1379/suppl/DC1 -
Liu, J. Z., Tozzi, F., Waterworth, D. M., Pillai, S. G., Muglia, P., Middleton, L., Berrettini, W., Knouff, C. W., Yuan, X., Waeber, G., Vollenweider, P., Preisig, M., Wareham, N. J., Zhao, J. H., Loos, R. J. F., Barroso, I., Khaw, K.-T., Grundy, S., Barter, P., Mahley, R. and 86 moreLiu, J. Z., Tozzi, F., Waterworth, D. M., Pillai, S. G., Muglia, P., Middleton, L., Berrettini, W., Knouff, C. W., Yuan, X., Waeber, G., Vollenweider, P., Preisig, M., Wareham, N. J., Zhao, J. H., Loos, R. J. F., Barroso, I., Khaw, K.-T., Grundy, S., Barter, P., Mahley, R., Kesaniemi, A., McPherson, R., Vincent, J. B., Strauss, J., Kennedy, J. L., Farmer, A., McGuffin, P., Day, R., Matthews, K., Bakke, P., Gulsvik, A., Lucae, S., Ising, M., Brueckl, T., Horstmann, S., Wichmann–, H.-E., Rawal, R., Dahmen, N., Lamina, C., Polasek, O., Zgaga, L., Huffman, J., Campbell, S., Kooner, J., Chambers, J. C., Burnett, M. S., Devaney, J. M., Pichard, A. D., Kent, K. M., Satler, L., Lindsay, J. M., Waksman, R., Epstein, S., Wilson, J. F., Wild, S. H., Campbell, H., Vitart, V., Reilly, M. P., Li, M., Qu, L., Wilensky, R., Matthai, W., Hakonarson, H. H., Rader, D. J., Franke, A., Wittig, M., Schäfer, A., Uda, M., Terracciano, A., Xiao, X., Busonero, F., Scheet, P., Schlessinger, D., St. Clair, D., Rujescu, D., Abecasis, G. R., Grabe, H. J., Teumer, A., Völzke, H., Petersmann, A., John, U., Rudan, I., Hayward, C., Wright, A. F., Kolcic, I., Wright, B. J., Thompson, J. R., Balmforth, A. J., Hall, A. S., Samani, N. J., Anderson, C. A., Ahmad, T., Mathew, C. G., Parkes, M., Satsangi, J., Caulfield, M., Munroe, P. B., Farrall, M., Dominiczak, A., Worthington, J., Thomson, W., Eyre, S., Barton, A., Mooser, V., Francks, C., & Marchini, J. (2010). Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nature Genetics, 42(5), 436-440. doi:10.1038/ng.572.
Abstract
Smoking is a leading global cause of disease and mortality. We established the Oxford-GlaxoSmithKline study (Ox-GSK) to perform a genome-wide meta-analysis of SNP association with smoking-related behavioral traits. Our final data set included 41,150 individuals drawn from 20 disease, population and control cohorts. Our analysis confirmed an effect on smoking quantity at a locus on 15q25 (P = 9.45 x 10(-19)) that includes CHRNA5, CHRNA3 and CHRNB4, three genes encoding neuronal nicotinic acetylcholine receptor subunits. We used data from the 1000 Genomes project to investigate the region using imputation, which allowed for analysis of virtually all common SNPs in the region and offered a fivefold increase in marker density over HapMap2 (ref. 2) as an imputation reference panel. Our fine-mapping approach identified a SNP showing the highest significance, rs55853698, located within the promoter region of CHRNA5. Conditional analysis also identified a secondary locus (rs6495308) in CHRNA3. -
Muglia, P., Tozzi, F., Galwey, N. W., Francks, C., Upmanyu, R., Kong, X., Antoniades, A., Domenici, E., Perry, J., Rothen, S., Vandeleur, C. L., Mooser, V., Waeber, G., Vollenweider, P., Preisig, M., Lucae, S., Muller-Myhsok, B., Holsboer, F., Middleton, L. T., & Roses, A. D. (2010). Genome-wide association study of recurrent major depressive disorder in two European case-control cohorts. Molecular Psychiatry, 15(6), 589-601. doi:10.1038/mp.2008.131.
Abstract
Major depressive disorder (MDD) is a highly prevalent disorder with substantial heritability. Heritability has been shown to be substantial and higher in the variant of MDD characterized by recurrent episodes of depression. Genetic studies have thus far failed to identify clear and consistent evidence of genetic risk factors for MDD. We conducted a genome-wide association study (GWAS) in two independent datasets. The first GWAS was performed on 1022 recurrent MDD patients and 1000 controls genotyped on the Illumina 550 platform. The second was conducted on 492 recurrent MDD patients and 1052 controls selected from a population-based collection, genotyped on the Affymetrix 5.0 platform. Neither GWAS identified any SNP that achieved GWAS significance. We obtained imputed genotypes at the Illumina loci for the individuals genotyped on the Affymetrix platform, and performed a meta-analysis of the two GWASs for this common set of approximately half a million SNPs. The meta-analysis did not yield genome-wide significant results either. The results from our study suggest that SNPs with substantial odds ratio are unlikely to exist for MDD, at least in our datasets and among the relatively common SNPs genotyped or tagged by the half-million-loci arrays. Meta-analysis of larger datasets is warranted to identify SNPs with smaller effects or with rarer allele frequencies that contribute to the risk of MDD.Additional information
http://www.nature.com/mp/journal/v15/n6/suppinfo/mp2008131s1.html?url=/mp/journ…
Share this page