Displaying 1 - 7 of 7
-
Pu, Y., Francks, C., & Kong, X. (2025). Global brain asymmetry. Trends in Cognitive Sciences, 29(2), 114-117. doi:10.1016/j.tics.2024.10.008.
Abstract
Lateralization is a defining characteristic of the human brain, often studied through localized approaches that focus on interhemispheric differences between homologous pairs of regions. It is also important to emphasize an integrative perspective of global brain asymmetry, in which hemispheric differences are understood through global patterns across the entire brain. -
Rivera-Olvera, A., Houwing, D. J., Ellegood, J., Masifi, S., Martina, S., Silberfeld, A., Pourquie, O., Lerch, J. P., Francks, C., Homberg, J. R., Van Heukelum, S., & Grandjean, J. (2025). The universe is asymmetric, the mouse brain too. Molecular Psychiatry, 30, 489-496. doi:10.1038/s41380-024-02687-2.
Abstract
Hemispheric brain asymmetry is a basic organizational principle of the human brain and has been implicated in various psychiatric conditions, including autism spectrum disorder. Brain asymmetry is not a uniquely human feature and is observed in other species such as the mouse. Yet, asymmetry patterns are generally nuanced, and substantial sample sizes are required to detect these patterns. In this pre-registered study, we use a mouse dataset from the Province of Ontario Neurodevelopmental Network, which comprises structural MRI data from over 2000 mice, including genetic models for autism spectrum disorder, to reveal the scope and magnitude of hemispheric asymmetry in the mouse. Our findings demonstrate the presence of robust hemispheric asymmetry in the mouse brain, such as larger right hemispheric volumes towards the anterior pole and larger left hemispheric volumes toward the posterior pole, opposite to what has been shown in humans. This suggests the existence of species-specific traits. Further clustering analysis identified distinct asymmetry patterns in autism spectrum disorder models, a phenomenon that is also seen in atypically developing participants. Our study shows potential for the use of mouse models in studying the biological bases of typical and atypical brain asymmetry but also warrants caution as asymmetry patterns seem to differ between humans and mice. -
Sha, Z., & Francks, C. (2025). Large-scale genetic mapping for human brain asymmetry. In C. Papagno, & P. Corballis (
Eds. ), Handbook of Clinical Neurology: Cerebral Asymmetries (pp. 241-254). Amsterdam: Elsevier.Abstract
Left-right asymmetry is an important aspect of human brain organization for functions including language and hand motor control, which can be altered in some psychiatric traits. The last five years have seen rapid advances in the identification of specific genes linked to variation in asymmetry of the human brain and/or handedness. These advances have been driven by a new generation of large-scale genome-wide association studies, carried out in samples ranging from roughly 16,000 to over 1.5 million participants. The implicated genes tend to be most active in the embryonic and fetal brain, consistent with early developmental patterning of brain asymmetry. Several of the genes encode components of microtubules, or other microtubule-associated proteins. Microtubules are key elements of the internal cellular skeleton (cytoskeleton). A major challenge remains to understand how these genes affect, or even induce, the brain’s left-right axis. Several of the implicated genes have also been associated with psychiatric or neurological disorders, and polygenic dispositions to autism and schizophrenia have been associated with structural brain asymmetry. Knowledge of developmental mechanisms that lead to hemispheric specialization may ultimately help to define etiologic subtypes of brain disorders. -
Roe, J. M., Vidal-Piñeiro, D., Amlien, I. K., Pan, M., Sneve, M. H., Thiebaut de Schotten, M., Friedrich, P., Sha, Z., Francks, C., Eilertsen, E. M., Wang, Y., Walhovd, K. B., Fjell, A. M., & Westerhausen, R. (2023). Tracing the development and lifespan change of population-level structural asymmetry in the cerebral cortex. eLife, 12: e84685. doi:10.7554/eLife.84685.
Abstract
Cortical asymmetry is a ubiquitous feature of brain organization that is altered in neurodevelopmental disorders and aging. Achieving consensus on cortical asymmetries in humans is necessary to uncover the genetic-developmental mechanisms that shape them and factors moderating cortical lateralization. Here, we delineate population-level asymmetry in cortical thickness and surface area vertex-wise in 7 datasets and chart asymmetry trajectories across life (4-89 years; observations = 3937; 70% longitudinal). We reveal asymmetry interrelationships, heritability, and test associations in UK Biobank (N=∼37,500). Cortical asymmetry was robust across datasets. Whereas areal asymmetry is predominantly stable across life, thickness asymmetry grows in development and declines in aging. Areal asymmetry correlates in specific regions, whereas thickness asymmetry is globally interrelated across cortex and suggests high directional variability in global thickness lateralization. Areal asymmetry is moderately heritable (max h2SNP ∼19%), and phenotypic correlations are reflected by high genetic correlations, whereas heritability of thickness asymmetry is low. Finally, we detected an asymmetry association with cognition and confirm recently-reported handedness links. Results suggest areal asymmetry is developmentally stable and arises in early life, whereas developmental changes in thickness asymmetry may lead to directional variability of global thickness lateralization. Our results bear enough reproducibility to serve as a standard for future brain asymmetry studies. -
Schijven, D., Postema, M., Fukunaga, M., Matsumoto, J., Miura, K., De Zwarte, S. M., Van Haren, N. E. M., Cahn, W., Hulshoff Pol, H. E., Kahn, R. S., Ayesa-Arriola, R., Ortiz-García de la Foz, V., Tordesillas-Gutierrez, D., Vázquez-Bourgon, J., Crespo-Facorro, B., Alnæs, D., Dahl, A., Westlye, L. T., Agartz, I., Andreassen, O. A. and 129 moreSchijven, D., Postema, M., Fukunaga, M., Matsumoto, J., Miura, K., De Zwarte, S. M., Van Haren, N. E. M., Cahn, W., Hulshoff Pol, H. E., Kahn, R. S., Ayesa-Arriola, R., Ortiz-García de la Foz, V., Tordesillas-Gutierrez, D., Vázquez-Bourgon, J., Crespo-Facorro, B., Alnæs, D., Dahl, A., Westlye, L. T., Agartz, I., Andreassen, O. A., Jönsson, E. G., Kochunov, P., Bruggemann, J. M., Catts, S. V., Michie, P. T., Mowry, B. J., Quidé, Y., Rasser, P. E., Schall, U., Scott, R. J., Carr, V. J., Green, M. J., Henskens, F. A., Loughland, C. M., Pantelis, C., Weickert, C. S., Weickert, T. W., De Haan, L., Brosch, K., Pfarr, J.-K., Ringwald, K. G., Stein, F., Jansen, A., Kircher, T. T., Nenadić, I., Krämer, B., Gruber, O., Satterthwaite, T. D., Bustillo, J., Mathalon, D. H., Preda, A., Calhoun, V. D., Ford, J. M., Potkin, S. G., Chen, J., Tan, Y., Wang, Z., Xiang, H., Fan, F., Bernardoni, F., Ehrlich, S., Fuentes-Claramonte, P., Garcia-Leon, M. A., Guerrero-Pedraza, A., Salvador, R., Sarró, S., Pomarol-Clotet, E., Ciullo, V., Piras, F., Vecchio, D., Banaj, N., Spalletta, G., Michielse, S., Van Amelsvoort, T., Dickie, E. W., Voineskos, A. N., Sim, K., Ciufolini, S., Dazzan, P., Murray, R. M., Kim, W.-S., Chung, Y.-C., Andreou, C., Schmidt, A., Borgwardt, S., McIntosh, A. M., Whalley, H. C., Lawrie, S. M., Du Plessis, S., Luckhoff, H. K., Scheffler, F., Emsley, R., Grotegerd, D., Lencer, R., Dannlowski, U., Edmond, J. T., Rootes-Murdy, K., Stephen, J. M., Mayer, A. R., Antonucci, L. A., Fazio, L., Pergola, G., Bertolino, A., Díaz-Caneja, C. M., Janssen, J., Lois, N. G., Arango, C., Tomyshev, A. S., Lebedeva, I., Cervenka, S., Sellgren, C. M., Georgiadis, F., Kirschner, M., Kaiser, S., Hajek, T., Skoch, A., Spaniel, F., Kim, M., Kwak, Y. B., Oh, S., Kwon, J. S., James, A., Bakker, G., Knöchel, C., Stäblein, M., Oertel, V., Uhlmann, A., Howells, F. M., Stein, D. J., Temmingh, H. S., Diaz-Zuluaga, A. M., Pineda-Zapata, J. A., López-Jaramillo, C., Homan, S., Ji, E., Surbeck, W., Homan, P., Fisher, S. E., Franke, B., Glahn, D. C., Gur, R. C., Hashimoto, R., Jahanshad, N., Luders, E., Medland, S. E., Thompson, P. M., Turner, J. A., Van Erp, T. G., & Francks, C. (2023). Large-scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium. Proceedings of the National Academy of Sciences of the United States of America, 120(14): e2213880120. doi:10.1073/pnas.2213880120.
Abstract
Left–right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case–control study of structural brain asymmetries in schizophrenia, with MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case–control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case–control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case–control status. Subtle case–control differences of brain macrostructural asymmetry may reflect differences at the molecular, cytoarchitectonic, or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia. -
Sha, Z., Schijven, D., Fisher, S. E., & Francks, C. (2023). Genetic architecture of the white matter connectome of the human brain. Science Advances, 9(7): eadd2870. doi:10.1126/sciadv.add2870.
Abstract
White matter tracts form the structural basis of large-scale brain networks. We applied brain-wide tractography to diffusion images from 30,810 adults (U.K. Biobank) and found significant heritability for 90 node-level and 851 edge-level network connectivity measures. Multivariate genome-wide association analyses identified 325 genetic loci, of which 80% had not been previously associated with brain metrics. Enrichment analyses implicated neurodevelopmental processes including neurogenesis, neural differentiation, neural migration, neural projection guidance, and axon development, as well as prenatal brain expression especially in stem cells, astrocytes, microglia, and neurons. The multivariate association profiles implicated 31 loci in connectivity between core regions of the left-hemisphere language network. Polygenic scores for psychiatric, neurological, and behavioral traits also showed significant multivariate associations with structural connectivity, each implicating distinct sets of brain regions with trait-relevant functional profiles. This large-scale mapping study revealed common genetic contributions to variation in the structural connectome of the human brain.Additional information
figs. S1 to S14, legends for tables S1 to S31 tables S1 to S31 link to Preprint on bioRxiv -
Vingerhoets, G., Verhelst, H., Gerrits, R., Badcock, N., Bishop, D. V. M., Carey, D., Flindall, J., Grimshaw, G., Harris, L. J., Hausmann, M., Hirnstein, M., Jäncke, L., Joliot, M., Specht, K., Westerhausen, R., & LICI consortium (2023). Laterality indices consensus initiative (LICI): A Delphi expert survey report on recommendations to record, assess, and report asymmetry in human behavioural and brain research. Laterality, 28(2-3), 122-191. doi:10.1080/1357650X.2023.2199963.
Abstract
Laterality indices (LIs) quantify the left-right asymmetry of brain and behavioural variables and provide a measure that is statistically convenient and seemingly easy to interpret. Substantial variability in how structural and functional asymmetries are recorded, calculated, and reported, however, suggest little agreement on the conditions required for its valid assessment. The present study aimed for consensus on general aspects in this context of laterality research, and more specifically within a particular method or technique (i.e., dichotic listening, visual half-field technique, performance asymmetries, preference bias reports, electrophysiological recording, functional MRI, structural MRI, and functional transcranial Doppler sonography). Experts in laterality research were invited to participate in an online Delphi survey to evaluate consensus and stimulate discussion. In Round 0, 106 experts generated 453 statements on what they considered good practice in their field of expertise. Statements were organised into a 295-statement survey that the experts then were asked, in Round 1, to independently assess for importance and support, which further reduced the survey to 241 statements that were presented again to the experts in Round 2. Based on the Round 2 input, we present a set of critically reviewed key recommendations to record, assess, and report laterality research for various methods.Additional information
data that support the findings of this study are openly available in OSFFiles private
Request files
Share this page