Eleanor Huizeling

Publications

Displaying 1 - 3 of 3
  • Huizeling, E., Alday, P. M., Peeters, D., & Hagoort, P. (2023). Combining EEG and 3D-eye-tracking to study the prediction of upcoming speech in naturalistic virtual environments: A proof of principle. Neuropsychologia, 191: 108730. doi:10.1016/j.neuropsychologia.2023.108730.

    Abstract

    EEG and eye-tracking provide complementary information when investigating language comprehension. Evidence that speech processing may be facilitated by speech prediction comes from the observation that a listener's eye gaze moves towards a referent before it is mentioned if the remainder of the spoken sentence is predictable. However, changes to the trajectory of anticipatory fixations could result from a change in prediction or an attention shift. Conversely, N400 amplitudes and concurrent spectral power provide information about the ease of word processing the moment the word is perceived. In a proof-of-principle investigation, we combined EEG and eye-tracking to study linguistic prediction in naturalistic, virtual environments. We observed increased processing, reflected in theta band power, either during verb processing - when the verb was predictive of the noun - or during noun processing - when the verb was not predictive of the noun. Alpha power was higher in response to the predictive verb and unpredictable nouns. We replicated typical effects of noun congruence but not predictability on the N400 in response to the noun. Thus, the rich visual context that accompanied speech in virtual reality influenced language processing compared to previous reports, where the visual context may have facilitated processing of unpredictable nouns. Finally, anticipatory fixations were predictive of spectral power during noun processing and the length of time fixating the target could be predicted by spectral power at verb onset, conditional on the object having been fixated. Overall, we show that combining EEG and eye-tracking provides a promising new method to answer novel research questions about the prediction of upcoming linguistic input, for example, regarding the role of extralinguistic cues in prediction during language comprehension.
  • Huizeling, E., Wang, H., Holland, C., & Kessler, K. (2021). Changes in theta and alpha oscillatory signatures of attentional control in older and middle age. European Journal of Neuroscience, 54(1), 4314-4337. doi:10.1111/ejn.15259.

    Abstract

    Recent behavioural research has reported age-related changes in the costs of refocusing attention from a temporal (rapid serial visual presentation) to a spatial (visual search) task. Using magnetoencephalography, we have now compared the neural signatures of attention refocusing between three age groups (19–30, 40–49 and 60+ years) and found differences in task-related modulation and cortical localisation of alpha and theta oscillations. Efficient, faster refocusing in the youngest group compared to both middle age and older groups was reflected in parietal theta effects that were significantly reduced in the older groups. Residual parietal theta activity in older individuals was beneficial to attentional refocusing and could reflect preserved attention mechanisms. Slowed refocusing of attention, especially when a target required consolidation, in the older and middle-aged adults was accompanied by a posterior theta deficit and increased recruitment of frontal (middle-aged and older groups) and temporal (older group only) areas, demonstrating a posterior to anterior processing shift. Theta but not alpha modulation correlated with task performance, suggesting that older adults' stronger and more widely distributed alpha power modulation could reflect decreased neural precision or dedifferentiation but requires further investigation. Our results demonstrate that older adults present with different alpha and theta oscillatory signatures during attentional control, reflecting cognitive decline and, potentially, also different cognitive strategies in an attempt to compensate for decline.

    Additional information

    supplementary material
  • Huizeling, E., Wang, H., Holland, C., & Kessler, K. (2020). Age-related changes in attentional refocusing during simulated driving. Brain sciences, 10(8): 530. doi:10.3390/brainsci10080530.

    Abstract

    We recently reported that refocusing attention between temporal and spatial tasks becomes more difficult with increasing age, which could impair daily activities such as driving (Callaghan et al., 2017). Here, we investigated the extent to which difficulties in refocusing attention extend to naturalistic settings such as simulated driving. A total of 118 participants in five age groups (18–30; 40–49; 50–59; 60–69; 70–91 years) were compared during continuous simulated driving, where they repeatedly switched from braking due to traffic ahead (a spatially focal yet temporally complex task) to reading a motorway road sign (a spatially more distributed task). Sequential-Task (switching) performance was compared to Single-Task performance (road sign only) to calculate age-related switch-costs. Electroencephalography was recorded in 34 participants (17 in the 18–30 and 17 in the 60+ years groups) to explore age-related changes in the neural oscillatory signatures of refocusing attention while driving. We indeed observed age-related impairments in attentional refocusing, evidenced by increased switch-costs in response times and by deficient modulation of theta and alpha frequencies. Our findings highlight virtual reality (VR) and Neuro-VR as important methodologies for future psychological and gerontological research.

    Additional information

    supplementary file

Share this page