Karl-Magnus Petersson

Publications

Displaying 1 - 20 of 166
  • Araújo, S., Reis, A., Faísca, L., & Petersson, K. M. (in press). Brain sensitivity to words and the “word recognition potential”. In D. Marques, & J. H. Toscano (Eds.), De las neurociencias a la neuropsicologia: el estúdio del cerebro humano. Barranquilla, Colombia: Corporación Universitaria Reformada.
  • Zhu, Z., Bastiaansen, M. C. M., Hakun, J. G., Petersson, K. M., Wang, S., & Hagoort, P. (2019). Semantic unification modulates N400 and BOLD signal change in the brain: A simultaneous EEG-fMRI study. Journal of Neurolinguistics. Advance online publication. doi:10.1016/j.jneuroling.2019.100855.

    Abstract

    Semantic unification during sentence comprehension has been associated with amplitude change of the N400 in event-related potential (ERP) studies, and activation in the left inferior frontal gyrus (IFG) in functional magnetic resonance imaging (fMRI) studies. However, the specificity of this activation to semantic unification remains unknown. To more closely examine the brain processes involved in semantic unification, we employed simultaneous EEG-fMRI to time-lock the semantic unification related N400 change, and integrated trial-by-trial variation in both N400 and BOLD change beyond the condition-level BOLD change difference measured in traditional fMRI analyses. Participants read sentences in which semantic unification load was parametrically manipulated by varying cloze probability. Separately, ERP and fMRI results replicated previous findings, in that semantic unification load parametrically modulated the amplitude of N400 and cortical activation. Integrated EEG-fMRI analyses revealed a different pattern in which functional activity in the left IFG and bilateral supramarginal gyrus (SMG) was associated with N400 amplitude, with the left IFG activation and bilateral SMG activation being selective to the condition-level and trial-level of semantic unification load, respectively. By employing the EEG-fMRI integrated analyses, this study among the first sheds light on how to integrate trial-level variation in language comprehension.
  • Duarte, R., Uhlmann, M., Van den Broek, D., Fitz, H., Petersson, K. M., & Morrison, A. (2018). Encoding symbolic sequences with spiking neural reservoirs. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN). doi:10.1109/IJCNN.2018.8489114.

    Abstract

    Biologically inspired spiking networks are an important tool to study the nature of computation and cognition in neural systems. In this work, we investigate the representational capacity of spiking networks engaged in an identity mapping task. We compare two schemes for encoding symbolic input, one in which input is injected as a direct current and one where input is delivered as a spatio-temporal spike pattern. We test the ability of networks to discriminate their input as a function of the number of distinct input symbols. We also compare performance using either membrane potentials or filtered spike trains as state variable. Furthermore, we investigate how the circuit behavior depends on the balance between excitation and inhibition, and the degree of synchrony and regularity in its internal dynamics. Finally, we compare different linear methods of decoding population activity onto desired target labels. Overall, our results suggest that even this simple mapping task is strongly influenced by design choices on input encoding, state-variables, circuit characteristics and decoding methods, and these factors can interact in complex ways. This work highlights the importance of constraining computational network models of behavior by available neurobiological evidence.
  • Huettig, F., Lachmann, T., Reis, A., & Petersson, K. M. (2018). Distinguishing cause from effect - Many deficits associated with developmental dyslexia may be a consequence of reduced and suboptimal reading experience. Language, Cognition and Neuroscience, 33(3), 333-350. doi:10.1080/23273798.2017.1348528.

    Abstract

    The cause of developmental dyslexia is still unknown despite decades of intense research. Many causal explanations have been proposed, based on the range of impairments displayed by affected individuals. Here we draw attention to the fact that many of these impairments are also shown by illiterate individuals who have not received any or very little reading instruction. We suggest that this fact may not be coincidental and that the performance differences of both illiterates and individuals with dyslexia compared to literate controls are, to a substantial extent, secondary consequences of either reduced or suboptimal reading experience or a combination of both. The search for the primary causes of reading impairments will make progress if the consequences of quantitative and qualitative differences in reading experience are better taken into account and not mistaken for the causes of reading disorders. We close by providing four recommendations for future research.
  • Inacio, F., Faisca, L., Forkstam, C., Araujo, S., Bramao, I., Reis, A., & Petersson, K. M. (2018). Implicit sequence learning is preserved in dyslexic children. Annals of Dyslexia, 68(1), 1-14. doi:10.1007/s11881-018-0158-x.

    Abstract

    This study investigates the implicit sequence learning abilities of dyslexic children using an artificial grammar learning task with an extended exposure period. Twenty children with developmental dyslexia participated in the study and were matched with two control groups—one matched for age and other for reading skills. During 3 days, all participants performed an acquisition task, where they were exposed to colored geometrical forms sequences with an underlying grammatical structure. On the last day, after the acquisition task, participants were tested in a grammaticality classification task. Implicit sequence learning was present in dyslexic children, as well as in both control groups, and no differences between groups were observed. These results suggest that implicit learning deficits per se cannot explain the characteristic reading difficulties of the dyslexics.
  • Silva, S., Folia, V., Inácio, F., Castro, S. L., & Petersson, K. M. (2018). Modality effects in implicit artificial grammar learning: An EEG study. Brain Research, 1687, 50-59. doi:10.1016/j.brainres.2018.02.020.

    Abstract

    Recently, it has been proposed that sequence learning engages a combination of modality-specific operating networks and modality-independent computational principles. In the present study, we compared the behavioural and EEG outcomes of implicit artificial grammar learning in the visual vs. auditory modality. We controlled for the influence of surface characteristics of sequences (Associative Chunk Strength), thus focusing on the strictly structural aspects of sequence learning, and we adapted the paradigms to compensate for known frailties of the visual modality compared to audition (temporal presentation, fast presentation rate). The behavioural outcomes were similar across modalities. Favouring the idea of modality-specificity, ERPs in response to grammar violations differed in topography and latency (earlier and more anterior component in the visual modality), and ERPs in response to surface features emerged only in the auditory modality. In favour of modality-independence, we observed three common functional properties in the late ERPs of the two grammars: both were free of interactions between structural and surface influences, both were more extended in a grammaticality classification test than in a preference classification test, and both correlated positively and strongly with theta event-related-synchronization during baseline testing. Our findings support the idea of modality-specificity combined with modality-independence, and suggest that memory for visual vs. auditory sequences may largely contribute to cross-modal differences.
  • Coco, M. I., Araujo, S., & Petersson, K. M. (2017). Disentangling stimulus plausibility and contextual congruency: Electro-physiological evidence for differential cognitive dynamics. Neuropsychologia, 96, 150-163. doi:10.1016/j.neuropsychologia.2016.12.008.

    Abstract

    Expectancy mechanisms are routinely used by the cognitive system in stimulus processing and in anticipation of appropriate responses. Electrophysiology research has documented negative shifts of brain activity when expectancies are violated within a local stimulus context (e.g., reading an implausible word in a sentence) or more globally between consecutive stimuli (e.g., a narrative of images with an incongruent end). In this EEG study, we examine the interaction between expectancies operating at the level of stimulus plausibility and at more global level of contextual congruency to provide evidence for, or against, a disassociation of the underlying processing mechanisms. We asked participants to verify the congruency of pairs of cross-modal stimuli (a sentence and a scene), which varied in plausibility. ANOVAs on ERP amplitudes in selected windows of interest show that congruency violation has longer-lasting (from 100 to 500 ms) and more widespread effects than plausibility violation (from 200 to 400 ms). We also observed critical interactions between these factors, whereby incongruent and implausible pairs elicited stronger negative shifts than their congruent counterpart, both early on (100–200 ms) and between 400–500 ms. Our results suggest that the integration mechanisms are sensitive to both global and local effects of expectancy in a modality independent manner. Overall, we provide novel insights into the interdependence of expectancy during meaning integration of cross-modal stimuli in a verification task
  • Silva, S., Inácio, F., Folia, V., & Petersson, K. M. (2017). Eye movements in implicit artificial grammar learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(9), 1387-1402. doi:10.1037/xlm0000350.

    Abstract

    Artificial grammar learning (AGL) has been probed with forced-choice behavioral tests (active tests). Recent attempts to probe the outcomes of learning (implicitly acquired knowledge) with eye-movement responses (passive tests) have shown null results. However, these latter studies have not tested for sensitivity effects, for example, increased eye movements on a printed violation. In this study, we tested for sensitivity effects in AGL tests with (Experiment 1) and without (Experiment 2) concurrent active tests (preference- and grammaticality classification) in an eye-tracking experiment. Eye movements discriminated between sequence types in passive tests and more so in active tests. The eye-movement profile did not differ between preference and grammaticality classification, and it resembled sensitivity effects commonly observed in natural syntax processing. Our findings show that the outcomes of implicit structured sequence learning can be characterized in eye tracking. More specifically, whole trial measures (dwell time, number of fixations) showed robust AGL effects, whereas first-pass measures (first-fixation duration) did not. Furthermore, our findings strengthen the link between artificial and natural syntax processing, and they shed light on the factors that determine performance differences in preference and grammaticality classification tests
  • Silva, S., Folia, V., Hagoort, P., & Petersson, K. M. (2017). The P600 in Implicit Artificial Grammar Learning. Cognitive Science, 41(1), 137-157. doi:10.1111/cogs.12343.

    Abstract

    The suitability of the Artificial Grammar Learning (AGL) paradigm to capture relevant aspects of the acquisition of linguistic structures has been empirically tested in a number of EEG studies. Some have shown a syntax-related P600 component, but it has not been ruled out that the AGL P600 effect is a response to surface features (e.g., subsequence familiarity) rather than the underlying syntax structure. Therefore, in this study, we controlled for the surface characteristics of the test sequences (associative chunk strength) and recorded the EEG before (baseline preference classification) and after (preference and grammaticality classification) exposure to a grammar. A typical, centroparietal P600 effect was elicited by grammatical violations after exposure, suggesting that the AGL P600 effect signals a response to structural irregularities. Moreover, preference and grammaticality classification showed a qualitatively similar ERP profile, strengthening the idea that the implicit structural mere exposure paradigm in combination with preference classification is a suitable alternative to the traditional grammaticality classification test.
  • Silva, S., Petersson, K. M., & Castro, S. L. (2017). The effects of ordinal load on incidental temporal learning. Quarterly Journal of Experimental Psychology, 70(4), 664-674. doi:10.1080/17470218.2016.1146909.

    Abstract

    How can we grasp the temporal structure of events? A few studies have indicated that representations of temporal structure are acquired when there is an intention to learn, but not when learning is incidental. Response-to-stimulus intervals, uncorrelated temporal structures, unpredictable ordinal information, and lack of metrical organization have been pointed out as key obstacles to incidental temporal learning, but the literature includes piecemeal demonstrations of learning under all these circumstances. We suggest that the unacknowledged effects of ordinal load may help reconcile these conflicting findings, ordinal load referring to the cost of identifying the sequence of events (e.g., tones, locations) where a temporal pattern is embedded. In a first experiment, we manipulated ordinal load into simple and complex levels. Participants learned ordinal-simple sequences, despite their uncorrelated temporal structure and lack of metrical organization. They did not learn ordinal-complex sequences, even though there were no response-to-stimulus intervals nor unpredictable ordinal information. In a second experiment, we probed learning of ordinal-complex sequences with strong metrical organization, and again there was no learning. We conclude that ordinal load is a key obstacle to incidental temporal learning. Further analyses showed that the effect of ordinal load is to mask the expression of temporal knowledge, rather than to prevent learning.
  • Udden, J., Ingvar, M., Hagoort, P., & Petersson, K. M. (2017). Broca’s region: A causal role in implicit processing of grammars with crossed non-adjacent dependencies. Cognition, 164, 188-198. doi:10.1016/j.cognition.2017.03.010.

    Abstract

    Non-adjacent dependencies are challenging for the language learning machinery and are acquired later than adjacent dependencies. In this transcranial magnetic stimulation (TMS) study, we show that participants successfully discriminated between grammatical and non-grammatical sequences after having implicitly acquired an artificial language with crossed non-adjacent dependencies. Subsequent to transcranial magnetic stimulation of Broca’s region, discrimination was impaired compared to when a language-irrelevant control region (vertex) was stimulated. These results support the view that Broca’s region is engaged in structured sequence processing and extend previous functional neuroimaging results on artificial grammar learning (AGL) in two directions: first, the results establish that Broca’s region is a causal component in the processing of non-adjacent dependencies, and second, they show that implicit processing of non-adjacent dependencies engages Broca’s region. Since patients with lesions in Broca’s region do not always show grammatical processing difficulties, the result that Broca’s region is causally linked to processing of non-adjacent dependencies is a step towards clarification of the exact nature of syntactic deficits caused by lesions or perturbation to Broca’s region. Our findings are consistent with previous results and support a role for Broca’s region in general structured sequence processing, rather than a specific role for the processing of hierarchically organized sentence structure.
  • Araújo, S., Faísca, L., Reis, A., Marques, J. F., & Petersson, K. M. (2016). Visual naming deficits in dyslexia: An ERP investigation of different processing domains. Neuropsychologia, 91, 61-76. doi:10.1016/j.neuropsychologia.2016.07.007.

    Abstract

    Naming speed deficits are well documented in developmental dyslexia, expressed by slower naming times and more errors in response to familiar items. Here we used event-related potentials (ERPs) to examine at what processing level the deficits in dyslexia emerge during a discrete-naming task. Dyslexic and skilled adult control readers performed a primed object-naming task, in which the relationship between the prime and the target was manipulated along perceptual, semantic and phonological dimensions. A 3×2 design that crossed Relationship Type (Visual, Phonemic Onset, and Semantic) with Relatedness (Related and Unrelated) was used. An attenuated N/P190 – indexing early visual processing – and N300 – which index late visual processing – was observed to pictures preceded by perceptually related (vs. unrelated) primes in the control but not in the dyslexic group. These findings suggest suboptimal processing in early stages of object processing in dyslexia, when integration and mapping of perceptual information to a more form-specific percept in memory take place. On the other hand, both groups showed an N400 effect associated with semantically related pictures (vs. unrelated), taken to reflect intact integration of semantic similarities in both dyslexic and control readers. We also found an electrophysiological effect of phonological priming in the N400 range – that is, an attenuated N400 to objects preceded by phonemic related primes vs. unrelated – while it showed a more widespread distributed and more pronounced over the right hemisphere in the dyslexics. Topographic differences between groups might have originated from a word form encoding process with different characteristics in dyslexics compared to control readers.
  • Bramão, I., Reis, A., Petersson, K. M., & Faísca, L. (2016). Knowing that strawberries are red and seeing red strawberries: The interaction between surface colour and colour knowledge information. Journal of Cognitive Psychology, 28(6), 641-657. doi:10.1080/20445911.2016.1182171.

    Abstract

    his study investigates the interaction between surface and colour knowledge information during object recognition. In two different experiments, participants were instructed to decide whether two presented stimuli belonged to the same object identity. On the non-matching trials, we manipulated the shape and colour knowledge information activated by the two stimuli by creating four different stimulus pairs: (1) similar in shape and colour (e.g. TOMATO–APPLE); (2) similar in shape and dissimilar in colour (e.g. TOMATO–COCONUT); (3) dissimilar in shape and similar in colour (e.g. TOMATO–CHILI PEPPER) and (4) dissimilar in both shape and colour (e.g. TOMATO–PEANUT). The object pictures were presented in typical and atypical colours and also in black-and-white. The interaction between surface and colour knowledge showed to be contingent upon shape information: while colour knowledge is more important for recognising structurally similar shaped objects, surface colour is more prominent for recognising structurally dissimilar shaped objects.
  • Silva, S., Petersson, K. M., & Castro, S. (2016). Rhythm in the brain: Is music special? In D. Da Silva Marques, & J. Avila-Toscano (Eds.), Neuroscience to neuropsychology: The study of the human brain (pp. 29-54). Barranquilla, Colombia: Ediciones CUR.
  • Silva, S., Faísca, L., Araújo, S., Casaca, L., Carvalho, L., Petersson, K. M., & Reis, A. (2016). Too little or too much? Parafoveal preview benefits and parafoveal load costs in dyslexic adults. Annals of Dyslexia, 66(2), 187-201. doi:10.1007/s11881-015-0113-z.

    Abstract

    Two different forms of parafoveal dysfunction have been hypothesized as core deficits of dyslexic individuals: reduced parafoveal preview benefits (“too little parafovea”) and increased costs of parafoveal load (“too much parafovea”). We tested both hypotheses in a single eye-tracking experiment using a modified serial rapid automatized naming (RAN) task. Comparisons between dyslexic and non-dyslexic adults showed reduced parafoveal preview benefits in dyslexics, without increased costs of parafoveal load. Reduced parafoveal preview benefits were observed in a naming task, but not in a silent letter-finding task, indicating that the parafoveal dysfunction may be consequent to the overload with extracting phonological information from orthographic input. Our results suggest that dyslexics’ parafoveal dysfunction is not based on strict visuo-attentional factors, but nevertheless they stress the importance of extra-phonological processing. Furthermore, evidence of reduced parafoveal preview benefits in dyslexia may help understand why serial RAN is an important reading predictor in adulthood
  • Silva, S., Reis, A., Casaca, L., Petersson, K. M., & Faísca, L. (2016). When the eyes no longer lead: Familiarity and length effects eye-voice span. Frontiers in Psychology, 7: 1720. doi:10.3389/fpsyg.2016.01720.

    Abstract

    During oral reading, the eyes tend to be ahead of the voice (eye-voice span, EVS). It has been hypothesized that the extent to which this happens depends on the automaticity of reading processes, namely on the speed of print-to-sound conversion. We tested whether EVS is affected by another automaticity component – immunity from interference. To that end, we manipulated word familiarity (high-frequency, lowfrequency, and pseudowords, PW) and word length as proxies of immunity from interference, and we used linear mixed effects models to measure the effects of both variables on the time interval at which readers do parallel processing by gazing at word N C 1 while not having articulated word N yet (offset EVS). Parallel processing was enhanced by automaticity, as shown by familiarity length interactions on offset EVS, and it was impeded by lack of automaticity, as shown by the transformation of offset EVS into voice-eye span (voice ahead of the offset of the eyes) in PWs. The relation between parallel processing and automaticity was strengthened by the fact that offset EVS predicted reading velocity. Our findings contribute to understand how the offset EVS, an index that is obtained in oral reading, may tap into different components of automaticity that underlie reading ability, oral or silent. In addition, we compared the duration of the offset EVS with the average reference duration of stages in word production, and we saw that the offset EVS may accommodate for more than the articulatory programming stage of word N.
  • Weber, K., Christiansen, M., Petersson, K. M., Indefrey, P., & Hagoort, P. (2016). fMRI syntactic and lexical repetition effects reveal the initial stages of learning a new language. The Journal of Neuroscience, 36, 6872-6880. doi:10.1523/JNEUROSCI.3180-15.2016.

    Abstract

    When learning a new language, we build brain networks to process and represent the acquired words and syntax and integrate these with existing language representations. It is an open question whether the same or different neural mechanisms are involved in learning and processing a novel language compared to the native language(s). Here we investigated the neural repetition effects of repeating known and novel word orders while human subjects were in the early stages of learning a new language. Combining a miniature language with a syntactic priming paradigm, we examined the neural correlates of language learning online using functional magnetic resonance imaging (fMRI). In left inferior frontal gyrus (LIFG) and posterior temporal cortex the repetition of novel syntactic structures led to repetition enhancement, while repetition of known structures resulted in repetition suppression. Additional verb repetition led to an increase in the syntactic repetition enhancement effect in language-related brain regions. Similarly the repetition of verbs led to repetition enhancement effects in areas related to lexical and semantic processing, an effect that continued to increase in a subset of these regions. Repetition enhancement might reflect a mechanism to build and strengthen a neural network to process novel syntactic structures and lexical items. By contrast, the observed repetition suppression points to overlapping neural mechanisms for native and new language constructions when these have sufficient structural similarities.
  • Araújo, S., Faísca, L., Bramão, I., Reis, A., & Petersson, K. M. (2015). Lexical and sublexical orthographic processing: An ERP study with skilled and dyslexic adult readers. Brain and Language, 141, 16-27. doi:10.1016/j.bandl.2014.11.007.

    Abstract

    This ERP study investigated the cognitive nature of the P1–N1 components during orthographic processing. We used an implicit reading task with various types of stimuli involving different amounts of sublexical or lexical orthographic processing (words, pseudohomophones, pseudowords, nonwords, and symbols), and tested average and dyslexic readers. An orthographic regularity effect (pseudowords– nonwords contrast) was observed in the average but not in the dyslexic group. This suggests an early sensitivity to the dependencies among letters in word-forms that reflect orthographic structure, while the dyslexic brain apparently fails to be appropriately sensitive to these complex features. Moreover, in the adults the N1-response may already reflect lexical access: (i) the N1 was sensitive to the familiar vs. less familiar orthographic sequence contrast; (ii) and early effects of the phonological form (words-pseudohomophones contrast) were also found. Finally, the later N320 component was attenuated in the dyslexics, suggesting suboptimal processing in later stages of phonological analysis.
  • Araújo, S., Reis, A., Petersson, K. M., & Faísca, L. (2015). Rapid automatized naming and reading performance: A meta-analysis. Journal of Educational Psychology, 107(3), 868-883. doi:10.1037/edu0000006.

    Abstract

    Evidence that rapid naming skill is associated with reading ability has become increasingly prevalent in recent years. However, there is considerable variation in the literature concerning the magnitude of this relationship. The objective of the present study was to provide a comprehensive analysis of the evidence on the relationship between rapid automatized naming (RAN) and reading performance. To this end, we conducted a meta-analysis of the correlational relationship between these 2 constructs to (a) determine the overall strength of the RAN–reading association and (b) identify variables that systematically moderate this relationship. A random-effects model analysis of data from 137 studies (857 effect sizes; 28,826 participants) indicated a moderate-to-strong relationship between RAN and reading performance (r = .43, I2 = 68.40). Further analyses revealed that RAN contributes to the 4 measures of reading (word reading, text reading, non-word reading, and reading comprehension), but higher coefficients emerged in favor of real word reading and text reading. RAN stimulus type and type of reading score were the factors with the greatest moderator effect on the magnitude of the RAN–reading relationship. The consistency of orthography and the subjects’ grade level were also found to impact this relationship, although the effect was contingent on reading outcome. It was less evident whether the subjects’ reading proficiency played a role in the relationship. Implications for future studies are discussed.
  • Araújo, S., Faísca, L., Bramão, I., Petersson, K. M., & Reis, A. (2014). Lexical and phonological processes in dyslexic readers: Evidences from a visual lexical decision task. Dyslexia, 20, 38-53. doi:10.1002/dys.1461.

    Abstract

    The aim of the present study was to investigate whether reading failure in the context of an orthography of intermediate consistency is linked to inefficient use of the lexical orthographic reading procedure. The performance of typically developing and dyslexic Portuguese-speaking children was examined in a lexical decision task, where the stimulus lexicality, word frequency and length were manipulated. Both lexicality and length effects were larger in the dyslexic group than in controls, although the interaction between group and frequency disappeared when the data were transformed to control for general performance factors. Children with dyslexia were influenced in lexical decision making by the stimulus length of words and pseudowords, whereas age-matched controls were influenced by the length of pseudowords only. These findings suggest that non-impaired readers rely mainly on lexical orthographic information, but children with dyslexia preferentially use the phonological decoding procedure—albeit poorly—most likely because they struggle to process orthographic inputs as a whole such as controls do. Accordingly, dyslexic children showed significantly poorer performance than controls for all types of stimuli, including words that could be considered over-learned, such as high-frequency words. This suggests that their orthographic lexical entries are less established in the orthographic lexicon

Share this page