Displaying 1 - 6 of 6
-
Araújo, S., Faísca, L., Bramão, I., Reis, A., & Petersson, K. M. (2015). Lexical and sublexical orthographic processing: An ERP study with skilled and dyslexic adult readers. Brain and Language, 141, 16-27. doi:10.1016/j.bandl.2014.11.007.
Abstract
This ERP study investigated the cognitive nature of the P1–N1 components during orthographic processing. We used an implicit reading task with various types of stimuli involving different amounts of sublexical or lexical orthographic processing (words, pseudohomophones, pseudowords, nonwords, and symbols), and tested average and dyslexic readers. An orthographic regularity effect (pseudowords– nonwords contrast) was observed in the average but not in the dyslexic group. This suggests an early sensitivity to the dependencies among letters in word-forms that reflect orthographic structure, while the dyslexic brain apparently fails to be appropriately sensitive to these complex features. Moreover, in the adults the N1-response may already reflect lexical access: (i) the N1 was sensitive to the familiar vs. less familiar orthographic sequence contrast; (ii) and early effects of the phonological form (words-pseudohomophones contrast) were also found. Finally, the later N320 component was attenuated in the dyslexics, suggesting suboptimal processing in later stages of phonological analysis. -
Araújo, S., Reis, A., Petersson, K. M., & Faísca, L. (2015). Rapid automatized naming and reading performance: A meta-analysis. Journal of Educational Psychology, 107(3), 868-883. doi:10.1037/edu0000006.
Abstract
Evidence that rapid naming skill is associated with reading ability has become increasingly prevalent in recent years. However, there is considerable variation in the literature concerning the magnitude of this relationship. The objective of the present study was to provide a comprehensive analysis of the evidence on the relationship between rapid automatized naming (RAN) and reading performance. To this end, we conducted a meta-analysis of the correlational relationship between these 2 constructs to (a) determine the overall strength of the RAN–reading association and (b) identify variables that systematically moderate this relationship. A random-effects model analysis of data from 137 studies (857 effect sizes; 28,826 participants) indicated a moderate-to-strong relationship between RAN and reading performance (r = .43, I2 = 68.40). Further analyses revealed that RAN contributes to the 4 measures of reading (word reading, text reading, non-word reading, and reading comprehension), but higher coefficients emerged in favor of real word reading and text reading. RAN stimulus type and type of reading score were the factors with the greatest moderator effect on the magnitude of the RAN–reading relationship. The consistency of orthography and the subjects’ grade level were also found to impact this relationship, although the effect was contingent on reading outcome. It was less evident whether the subjects’ reading proficiency played a role in the relationship. Implications for future studies are discussed.Additional information
http://dx.doi.org/10.1037/edu0000006.supp -
Castro-Caldas, A., Petersson, K. M., Reis, A., Stone-Elander, S., & Ingvar, M. (1998). The illiterate brain: Learning to read and write during childhood influences the functional organization of the adult brain. Brain, 121, 1053-1063. doi:10.1093/brain/121.6.1053.
Abstract
Learning a specific skill during childhood may partly determine the functional organization of the adult brain. This hypothesis led us to study oral language processing in illiterate subjects who, for social reasons, had never entered school and had no knowledge of reading or writing. In a brain activation study using PET and statistical parametric mapping, we compared word and pseudoword repetition in literate and illiterate subjects. Our study confirms behavioural evidence of different phonological processing in illiterate subjects. During repetition of real words, the two groups performed similarly and activated similar areas of the brain. In contrast, illiterate subjects had more difficulty repeating pseudowords correctly and did not activate the same neural structures as literates. These results are consistent with the hypothesis that learning the written form of language (orthography) interacts with the function of oral language. Our results indicate that learning to read and write during childhood influences the functional organization of the adult human brain. -
Ghatan, P. H., Hsieh, J. C., Petersson, K. M., Stone-Elander, S., & Ingvar, M. (1998). Coexistence of attention-based facilitation and inhibition in the human cortex. NeuroImage, 7, 23-29.
Abstract
A key function of attention is to select an appropriate subset of available information by facilitation of attended processes and/or inhibition of irrelevant processing. Functional imaging studies, using positron emission tomography, have during different experimental tasks revealed decreased neuronal activity in areas that process input from unattended sensory modalities. It has been hypothesized that these decreases reflect a selective inhibitory modulation of nonrelevant cortical processing. In this study we addressed this question using a continuous arithmetical task with and without concomitant disturbing auditory input (task-irrelevant speech). During the arithmetical task, irrelevant speech did not affect task-performance but yielded decreased activity in the auditory and midcingulate cortices and increased activity in the left posterior parietal cortex. This pattern of modulation is consistent with a top down inhibitory modulation of a nonattended input to the auditory cortex and a coexisting, attention-based facilitation of taskrelevant processing in higher order cortices. These findings suggest that task-related decreases in cortical activity may be of functional importance in the understanding of both attentional mechanisms and taskrelated information processing. -
Petersson, K. M. (1998). Comments on a Monte Carlo approach to the analysis of functional neuroimaging data. NeuroImage, 8, 108-112.
-
Petersson, K. M., Elfgren, C., & Ingvar, M. (1997). A dynamic role of the medial temporal lobe during retrieval of declarative memory in man. NeuroImage, 6, 1-11.
Abstract
Understanding the role of the medial temporal lobe (MTL) in learning and memory is an important problem in cognitive neuroscience. Memory and learning processes that depend on the function of the MTL and related diencephalic structures (e.g., the anterior and mediodorsal thalamic nuclei) are defined as declarative. We have studied the MTL activity as indicated by regional cerebral blood flow with positron emission tomography and statistical parametric mapping during recall of abstract designs in a less practiced memory state as well as in a well-practiced (well-encoded) memory state. The results showed an increased activity of the MTL bilaterally (including parahippocampal gyrus extending into hippocampus proper, as well as anterior lingual and anterior fusiform gyri) during retrieval in the less practiced memory state compared to the well-practiced memory state, indicating a dynamic role of the MTL in retrieval during the learning processes. The results also showed that the activation of the MTL decreases as the subjects learn to draw abstract designs from memory, indicating a changing role of the MTL during recall in the earlier stages of acquisition compared to the well-encoded declarative memory state.
Share this page