Publications

Displaying 1 - 10 of 10
  • Quaresima, A., Fitz, H., Duarte, R., Van den Broek, D., Hagoort, P., & Petersson, K. M. (2023). The Tripod neuron: A minimal structural reduction of the dendritic tree. The Journal of Physiology, 601(15), 3007-3437. doi:10.1113/JP283399.

    Abstract

    Neuron models with explicit dendritic dynamics have shed light on mechanisms for coincidence detection, pathway selection and temporal filtering. However, it is still unclear which morphological and physiological features are required to capture these phenomena. In this work, we introduce the Tripod neuron model and propose a minimal structural reduction of the dendritic tree that is able to reproduce these computations. The Tripod is a three-compartment model consisting of two segregated passive dendrites and a somatic compartment modelled as an adaptive, exponential integrate-and-fire neuron. It incorporates dendritic geometry, membrane physiology and receptor dynamics as measured in human pyramidal cells. We characterize the response of the Tripod to glutamatergic and GABAergic inputs and identify parameters that support supra-linear integration, coincidence-detection and pathway-specific gating through shunting inhibition. Following NMDA spikes, the Tripod neuron generates plateau potentials whose duration depends on the dendritic length and the strength of synaptic input. When fitted with distal compartments, the Tripod encodes previous activity into a dendritic depolarized state. This dendritic memory allows the neuron to perform temporal binding, and we show that it solves transition and sequence detection tasks on which a single-compartment model fails. Thus, the Tripod can account for dendritic computations previously explained only with more detailed neuron models or neural networks. Due to its simplicity, the Tripod neuron can be used efficiently in simulations of larger cortical circuits.
  • Silva, S., Inácio, F., Rocha e Sousa, D., Gaspar, N., Folia, V., & Petersson, K. M. (2023). Formal language hierarchy reflects different levels of cognitive complexity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(4), 642-660. doi:10.1037/xlm0001182.

    Abstract

    Formal language hierarchy describes levels of increasing syntactic complexity (adjacent dependencies, nonadjacent nested, nonadjacent crossed) of which the transcription into a hierarchy of cognitive complexity remains under debate. The cognitive foundations of formal language hierarchy have been contradicted by two types of evidence: First, adjacent dependencies are not easier to learn compared to nonadjacent; second, crossed nonadjacent dependencies may be easier than nested. However, studies providing these findings may have engaged confounds: Repetition monitoring strategies may have accounted for participants’ high performance in nonadjacent dependencies, and linguistic experience may have accounted for the advantage of crossed dependencies. We conducted two artificial grammar learning experiments where we addressed these confounds by manipulating reliance on repetition monitoring and by testing participants inexperienced with crossed dependencies. Results showed relevant differences in learning adjacent versus nonadjacent dependencies and advantages of nested over crossed, suggesting that formal language hierarchy may indeed translate into a hierarchy of cognitive complexity
  • Carlsson, K., Petrovic, P., Skare, S., Petersson, K. M., & Ingvar, M. (2000). Tickling expectations: Neural processing in anticipation of a sensory stimulus. Journal of Cognitive Neuroscience, 12(4), 691-703. doi:10.1162/089892900562318.
  • Ingvar, M., & Petersson, K. M. (2000). Functional maps and brain networks. In A. W. Toga (Ed.), Brain mapping: The systems (pp. 111-140). San Diego: Academic Press.
  • Lansner, A., Sandberg, A., Petersson, K. M., & Ingvar, M. (2000). On forgetful attractor network memories. In H. Malmgren, M. Borga, & L. Niklasson (Eds.), Artificial neural networks in medicine and biology: Proceedings of the ANNIMAB-1 Conference, Göteborg, Sweden, 13-16 May 2000 (pp. 54-62). Heidelberg: Springer Verlag.

    Abstract

    A recurrently connected attractor neural network with a Hebbian learning rule is currently our best ANN analogy for a piece cortex. Functionally biological memory operates on a spectrum of time scales with regard to induction and retention, and it is modulated in complex ways by sub-cortical neuromodulatory systems. Moreover, biological memory networks are commonly believed to be highly distributed and engage many co-operating cortical areas. Here we focus on the temporal aspects of induction and retention of memory in a connectionist type attractor memory model of a piece of cortex. A continuous time, forgetful Bayesian-Hebbian learning rule is described and compared to the characteristics of LTP and LTD seen experimentally. More generally, an attractor network implementing this learning rule can operate as a long-term, intermediate-term, or short-term memory. Modulation of the print-now signal of the learning rule replicates some experimental memory phenomena, like e.g. the von Restorff effect.
  • Petersson, K. M., Reis, A., Askelöf, S., Castro-Caldas, A., & Ingvar, M. (2000). Language processing modulated by literacy: A network analysis of verbal repetition in literate and illiterate subjects. Journal of Cognitive Neuroscience, 12(3), 364-382. doi:10.1162/089892900562147.
  • Petrovic, P., Petersson, K. M., Ghatan, P., Stone-Elander, S., & Ingvar, M. (2000). Pain related cerebral activation is altered by a distracting cognitive task. Pain, 85, 19-30.

    Abstract

    It has previously been suggested that the activity in sensory regions of the brain can be modulated by attentional mechanisms during parallel cognitive processing. To investigate whether such attention-related modulations are present in the processing of pain, the regional cerebral blood ¯ow was measured using [15O]butanol and positron emission tomography in conditions involving both pain and parallel cognitive demands. The painful stimulus consisted of the standard cold pressor test and the cognitive task was a computerised perceptual maze test. The activations during the maze test reproduced findings in previous studies of the same cognitive task. The cold pressor test evoked signi®cant activity in the contralateral S1, and bilaterally in the somatosensory association areas (including S2), the ACC and the mid-insula. The activity in the somatosensory association areas and periaqueductal gray/midbrain were significantly modified, i.e. relatively decreased, when the subjects also were performing the maze task. The altered activity was accompanied with significantly lower ratings of pain during the cognitive task. In contrast, lateral orbitofrontal regions showed a relative increase of activity during pain combined with the maze task as compared to only pain, which suggests the possibility of the involvement of frontal cortex in modulation of regions processing pain
  • Sandberg, A., Lansner, A., Petersson, K. M., & Ekeberg, Ö. (2000). A palimpsest memory based on an incremental Bayesian learning rule. Neurocomputing, 32(33), 987-994. doi:10.1016/S0925-2312(00)00270-8.

    Abstract

    Capacity limited memory systems need to gradually forget old information in order to avoid catastrophic forgetting where all stored information is lost. This can be achieved by allowing new information to overwrite old, as in the so-called palimpsest memory. This paper describes a new such learning rule employed in an attractor neural network. The network does not exhibit catastrophic forgetting, has a capacity dependent on the learning time constant and exhibits recency e!ects in retrieval
  • Sandberg, A., Lansner, A., Petersson, K. M., & Ekeberg, Ö. (2000). A palimpsest memory based on an incremental Bayesian learning rule. In J. M. Bower (Ed.), Computational Neuroscience: Trends in Research 2000 (pp. 987-994). Amsterdam: Elsevier.
  • Petersson, K. M., Elfgren, C., & Ingvar, M. (1997). A dynamic role of the medial temporal lobe during retrieval of declarative memory in man. NeuroImage, 6, 1-11.

    Abstract

    Understanding the role of the medial temporal lobe (MTL) in learning and memory is an important problem in cognitive neuroscience. Memory and learning processes that depend on the function of the MTL and related diencephalic structures (e.g., the anterior and mediodorsal thalamic nuclei) are defined as declarative. We have studied the MTL activity as indicated by regional cerebral blood flow with positron emission tomography and statistical parametric mapping during recall of abstract designs in a less practiced memory state as well as in a well-practiced (well-encoded) memory state. The results showed an increased activity of the MTL bilaterally (including parahippocampal gyrus extending into hippocampus proper, as well as anterior lingual and anterior fusiform gyri) during retrieval in the less practiced memory state compared to the well-practiced memory state, indicating a dynamic role of the MTL in retrieval during the learning processes. The results also showed that the activation of the MTL decreases as the subjects learn to draw abstract designs from memory, indicating a changing role of the MTL during recall in the earlier stages of acquisition compared to the well-encoded declarative memory state.

Share this page