Publications

Displaying 1 - 16 of 16
  • Araújo, S., Faísca, L., Petersson, K. M., & Reis, A. (2009). Cognitive profiles in Portuguese children with dyslexia. In Abstracts presented at the International Neuropsychological Society, Finnish Neuropsychological Society, Joint Mid-Year Meeting July 29-August 1, 2009. Helsinki, Finland & Tallinn, Estonia (pp. 23). Retrieved from http://www.neuropsykologia.fi/ins2009/INS_MY09_Abstract.pdf.
  • Araújo, S., Faísca, L., Petersson, K. M., & Reis, A. (2009). Visual processing factors contribute to object naming difficulties in dyslexic readers. In Abstracts presented at the International Neuropsychological Society, Finnish Neuropsychological Society, Joint Mid-Year Meeting July 29-August 1, 2009. Helsinki, Finland & Tallinn, Estonia (pp. 39). Retrieved from http://www.neuropsykologia.fi/ins2009/INS_MY09_Abstract.pdf.
  • Bramão, I., Faísca, L., Forkstam, C., Inácio, K., Petersson, K. M., & Reis, A. (2009). Interaction between perceptual color and color knowledge information in object recognition: Behavioral and electrophysiological evidence. In Abstracts presented at the International Neuropsychological Society, Finnish Neuropsychological Society, Joint Mid-Year Meeting July 29-August 1, 2009. Helsinki, Finland & Tallinn, Estonia (pp. 39). Retrieved from http://www.neuropsykologia.fi/ins2009/INS_MY09_Abstract.pdf.
  • Cavaco, P., Curuklu, B., & Petersson, K. M. (2009). Artificial grammar recognition using two spiking neural networks. Frontiers in Neuroinformatics. Conference abstracts: 2nd INCF Congress of Neuroinformatics. doi:10.3389/conf.neuro.11.2009.08.096.

    Abstract

    In this paper we explore the feasibility of artificial (formal) grammar recognition (AGR) using spiking neural networks. A biologically inspired minicolumn architecture is designed as the basic computational unit. A network topography is defined based on the minicolumn architecture, here referred to as nodes, connected with excitatory and inhibitory connections. Nodes in the network represent unique internal states of the grammar’s finite state machine (FSM). Future work to improve the performance of the networks is discussed. The modeling framework developed can be used by neurophysiological research to implement network layouts and compare simulated performance characteristics to actual subject performance.
  • Folia, V., Forkstam, C., Hagoort, P., & Petersson, K. M. (2009). Language comprehension: The interplay between form and content. In N. Taatgen, & H. van Rijn (Eds.), Proceedings of the 31th Annual Conference of the Cognitive Science Society (pp. 1686-1691). Austin, TX: Cognitive Science Society.

    Abstract

    In a 2x2 event-related FMRI study we find support for the idea that the inferior frontal cortex, centered on Broca’s region and its homologue, is involved in constructive unification operations during the structure-building process in parsing for comprehension. Tentatively, we provide evidence for a role of the dorsolateral prefrontal cortex centered on BA 9/46 in the control component of the language system. Finally, the left temporo-parietal cortex, in the vicinity of Wernicke’s region, supports the interaction between the syntax of gender agreement and sentence-level semantics.
  • Forkstam, C., Jansson, A., Ingvar, M., & Petersson, K. M. (2009). Modality transfer of acquired structural regularities: A preference for an acoustic route. In N. Taatgen, & H. Van Rijn (Eds.), Proceedings of the 31th Annual Conference of the Cognitive Science Society. Austin, TX: Cognitive Science Society.

    Abstract

    Human implicit learning can be investigated with implicit artificial grammar learning, a simple model for aspects of natural language acquisition. In this paper we investigate the remaining effect of modality transfer in syntactic classification of an acquired grammatical sequence structure after implicit grammar acquisition. Participants practiced either on acoustically presented syllable sequences or visually presented consonant letter sequences. During classification we independently manipulated the statistical frequency-based and rule-based characteristics of the classification stimuli. Participants performed reliably above chance on the within modality classification task although more so for those working on syllable sequence acquisition. These subjects were also the only group that kept a significant performance level in transfer classification. We speculate that this finding is of particular relevance in consideration of an ecological validity in the input signal in the use of artificial grammar learning and in language learning paradigms at large.
  • Menenti, L., Petersson, K. M., Scheeringa, R., & Hagoort, P. (2009). When elephants fly: Differential sensitivity of right and left inferior frontal gyri to discourse and world knowledge. Journal of Cognitive Neuroscience, 21, 2358-2368. doi:10.1162/jocn.2008.21163.

    Abstract

    Both local discourse and world knowledge are known to influence sentence processing. We investigated how these two sources of information conspire in language comprehension. Two types of critical sentences, correct and world knowledge anomalies, were preceded by either a neutral or a local context. The latter made the world knowledge anomalies more acceptable or plausible. We predicted that the effect of world knowledge anomalies would be weaker for the local context. World knowledge effects have previously been observed in the left inferior frontal region (Brodmann's area 45/47). In the current study, an effect of world knowledge was present in this region in the neutral context. We also observed an effect in the right inferior frontal gyrus, which was more sensitive to the discourse manipulation than the left inferior frontal gyrus. In addition, the left angular gyrus reacted strongly to the degree of discourse coherence between the context and critical sentence. Overall, both world knowledge and the discourse context affect the process of meaning unification, but do so by recruiting partly different sets of brain areas.
  • Pacheco, A., Araújo, S., Faísca, L., Petersson, K. M., & Reis, A. (2009). Profiling dislexic children: Phonology and visual naming skills. In Abstracts presented at the International Neuropsychological Society, Finnish Neuropsychological Society, Joint Mid-Year Meeting July 29-August 1, 2009. Helsinki, Finland & Tallinn, Estonia (pp. 40). Retrieved from http://www.neuropsykologia.fi/ins2009/INS_MY09_Abstract.pdf.
  • Petersson, K. M., Ingvar, M., & Reis, A. (2009). Language and literacy from a cognitive neuroscience perspective. In D. Olsen, & N. Torrance (Eds.), Cambridge handbook of literacy (pp. 152-181). Cambridge: Cambridge University Press.
  • Qin, S., Rijpkema, M., Tendolkar, I., Piekema, C., Hermans, E. J., Binder, M., Petersson, K. M., Luo, J., & Fernández, G. (2009). Dissecting medial temporal lobe contributions to item and associative memory formation. NeuroImage, 46, 874-881. doi:10.1016/j.neuroimage.2009.02.039.

    Abstract

    A fundamental and intensively discussed question is whether medial temporal lobe (MTL) processes that lead to non-associative item memories differ in their anatomical substrate from processes underlying associative memory formation. Using event-related functional magnetic resonance imaging, we implemented a novel design to dissociate brain activity related to item and associative memory formation not only by subsequent memory performance and anatomy but also in time, because the two constituents of each pair to be memorized were presented sequentially with an intra-pair delay of several seconds. Furthermore, the design enabled us to reduce potential differences in memory strength between item and associative memory by increasing task difficulty in the item recognition memory test. Confidence ratings for correct item recognition for both constituents did not differ between trials in which only item memory was correct and trials in which item and associative memory were correct. Specific subsequent memory analyses for item and associative memory formation revealed brain activity that appears selectively related to item memory formation in the posterior inferior temporal, posterior parahippocampal, and perirhinal cortices. In contrast, hippocampal and inferior prefrontal activity predicted successful retrieval of newly formed inter-item associations. Our findings therefore suggest that different MTL subregions indeed play distinct roles in the formation of item memory and inter-item associative memory as expected by several dual process models of the MTL memory system.
  • Scheeringa, R., Petersson, K. M., Oostenveld, R., Norris, D. G., Hagoort, P., & Bastiaansen, M. C. M. (2009). Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance. Neuroimage, 44, 1224-1238. doi:10.1016/j.neuroimage.2008.08.041.

    Abstract

    PET and fMRI experiments have previously shown that several brain regions in the frontal and parietal lobe are involved in working memory maintenance. MEG and EEG experiments have shown parametric increases with load for oscillatory activity in posterior alpha and frontal theta power. In the current study we investigated whether the areas found with fMRI can be associated with these alpha and theta effects by measuring simultaneous EEG and fMRI during a modified Sternberg task This allowed us to correlate EEG at the single trial level with the fMRI BOLD signal by forming a regressor based on single trial alpha and theta
    power estimates. We observed a right posterior, parametric alpha power increase, which was functionally related to decreases in BOLD in the primary visual cortex and in the posterior part of the right middle temporal gyrus. We relate this finding to the inhibition of neuronal activity that may interfere with WM maintenance. An observed parametric increase in frontal theta power was correlated to a decrease in BOLD in
    regions that together form the default mode network. We did not observe correlations between oscillatory EEG phenomena and BOLD in the traditional WM areas. In conclusion, the study shows that simultaneous EEG fMRI recordings can be successfully used to identify the emergence of functional networks in the brain during the execution of a cognitive task.
  • Snijders, T. M., Vosse, T., Kempen, G., Van Berkum, J. J. A., Petersson, K. M., & Hagoort, P. (2009). Retrieval and unification of syntactic structure in sentence comprehension: An fMRI study using word-category ambiguity. Cerebral Cortex, 19, 1493-1503. doi:10.1093/cercor/bhn187.

    Abstract

    Sentence comprehension requires the retrieval of single word information from long-term memory, and the integration of this information into multiword representations. The current functional magnetic resonance imaging study explored the hypothesis that the left posterior temporal gyrus supports the retrieval of lexical-syntactic information, whereas left inferior frontal gyrus (LIFG) contributes to syntactic unification. Twenty-eight subjects read sentences and word sequences containing word-category (noun–verb) ambiguous words at critical positions. Regions contributing to the syntactic unification process should show enhanced activation for sentences compared to words, and only within sentences display a larger signal for ambiguous than unambiguous conditions. The posterior LIFG showed exactly this predicted pattern, confirming our hypothesis that LIFG contributes to syntactic unification. The left posterior middle temporal gyrus was activated more for ambiguous than unambiguous conditions (main effect over both sentences and word sequences), as predicted for regions subserving the retrieval of lexical-syntactic information from memory. We conclude that understanding language involves the dynamic interplay between left inferior frontal and left posterior temporal regions.

    Additional information

    suppl1.pdf suppl2_dutch_stimulus.pdf
  • Tesink, C. M. J. Y., Buitelaar, J. K., Petersson, K. M., Van der Gaag, R. J., Kan, C. C., Tendolkar, I., & Hagoort, P. (2009). Neural correlates of pragmatic language comprehension in autism disorders. Brain, 132, 1941-1952. doi:10.1093/brain/awp103.

    Abstract

    Difficulties with pragmatic aspects of communication are universal across individuals with autism spectrum disorders (ASDs). Here we focused on an aspect of pragmatic language comprehension that is relevant to social interaction in daily life: the integration of speaker characteristics inferred from the voice with the content of a message. Using functional magnetic resonance imaging (fMRI), we examined the neural correlates of the integration of voice-based inferences about the speaker’s age, gender or social background, and sentence content in adults with ASD and matched control participants. Relative to the control group, the ASD group showed increased activation in right inferior frontal gyrus (RIFG; Brodmann area 47) for speakerincongruent sentences compared to speaker-congruent sentences. Given that both groups performed behaviourally at a similar level on a debriefing interview outside the scanner, the increased activation in RIFG for the ASD group was interpreted as being compensatory in nature. It presumably reflects spill-over processing from the language dominant left hemisphere due to higher task demands faced by the participants with ASD when integrating speaker characteristics and the content of a spoken sentence. Furthermore, only the control group showed decreased activation for speaker-incongruent relative to speaker-congruent sentences in right ventral medial prefrontal cortex (vMPFC; Brodmann area 10), including right anterior cingulate cortex (ACC; Brodmann area 24/32). Since vMPFC is involved in self-referential processing related to judgments and inferences about self and others, the absence of such a modulation in vMPFC activation in the ASD group possibly points to atypical default self-referential mental activity in ASD. Our results show that in ASD compensatory mechanisms are necessary in implicit, low-level inferential processes in spoken language understanding. This indicates that pragmatic language problems in ASD are not restricted to high-level inferential processes, but encompass the most basic aspects of pragmatic language processing.
  • Tesink, C. M. J. Y., Petersson, K. M., Van Berkum, J. J. A., Van den Brink, D., Buitelaar, J. K., & Hagoort, P. (2009). Unification of speaker and meaning in language comprehension: An fMRI study. Journal of Cognitive Neuroscience, 21, 2085-2099. doi:10.1162/jocn.2008.21161.

    Abstract

    When interpreting a message, a listener takes into account several sources of linguistic and extralinguistic information. Here we focused on one particular form of extralinguistic information, certain speaker characteristics as conveyed by the voice. Using functional magnetic resonance imaging, we examined the neural structures involved in the unification of sentence meaning and voice-based inferences about the speaker's age, sex, or social background. We found enhanced activation in the inferior frontal gyrus bilaterally (BA 45/47) during listening to sentences whose meaning was incongruent with inferred speaker characteristics. Furthermore, our results showed an overlap in brain regions involved in unification of speaker-related information and those used for the unification of semantic and world knowledge information [inferior frontal gyrus bilaterally (BA 45/47) and left middle temporal gyrus (BA 21)]. These findings provide evidence for a shared neural unification system for linguistic and extralinguistic sources of information and extend the existing knowledge about the role of inferior frontal cortex as a crucial component for unification during language comprehension.
  • Uddén, J., Araújo, S., Forkstam, C., Ingvar, M., Hagoort, P., & Petersson, K. M. (2009). A matter of time: Implicit acquisition of recursive sequence structures. In N. Taatgen, & H. Van Rijn (Eds.), Proceedings of the Thirty-First Annual Conference of the Cognitive Science Society (pp. 2444-2449).

    Abstract

    A dominant hypothesis in empirical research on the evolution of language is the following: the fundamental difference between animal and human communication systems is captured by the distinction between regular and more complex non-regular grammars. Studies reporting successful artificial grammar learning of nested recursive structures and imaging studies of the same have methodological shortcomings since they typically allow explicit problem solving strategies and this has been shown to account for the learning effect in subsequent behavioral studies. The present study overcomes these shortcomings by using subtle violations of agreement structure in a preference classification task. In contrast to the studies conducted so far, we use an implicit learning paradigm, allowing the time needed for both abstraction processes and consolidation to take place. Our results demonstrate robust implicit learning of recursively embedded structures (context-free grammar) and recursive structures with cross-dependencies (context-sensitive grammar) in an artificial grammar learning task spanning 9 days. Keywords: Implicit artificial grammar learning; centre embedded; cross-dependency; implicit learning; context-sensitive grammar; context-free grammar; regular grammar; non-regular grammar
  • Petersson, K. M., Elfgren, C., & Ingvar, M. (1997). A dynamic role of the medial temporal lobe during retrieval of declarative memory in man. NeuroImage, 6, 1-11.

    Abstract

    Understanding the role of the medial temporal lobe (MTL) in learning and memory is an important problem in cognitive neuroscience. Memory and learning processes that depend on the function of the MTL and related diencephalic structures (e.g., the anterior and mediodorsal thalamic nuclei) are defined as declarative. We have studied the MTL activity as indicated by regional cerebral blood flow with positron emission tomography and statistical parametric mapping during recall of abstract designs in a less practiced memory state as well as in a well-practiced (well-encoded) memory state. The results showed an increased activity of the MTL bilaterally (including parahippocampal gyrus extending into hippocampus proper, as well as anterior lingual and anterior fusiform gyri) during retrieval in the less practiced memory state compared to the well-practiced memory state, indicating a dynamic role of the MTL in retrieval during the learning processes. The results also showed that the activation of the MTL decreases as the subjects learn to draw abstract designs from memory, indicating a changing role of the MTL during recall in the earlier stages of acquisition compared to the well-encoded declarative memory state.

Share this page