Displaying 1 - 27 of 27
-
Araújo, S., Inácio, F., Francisco, A., Faísca, L., Petersson, K. M., & Reis, A. (2011). Component processes subserving rapid automatized naming in dyslexic and non-dyslexic readers. Dyslexia, 17, 242-255. doi:10.1002/dys.433.
Abstract
The current study investigated which time components of rapid automatized naming (RAN) predict group differences between dyslexic and non-dyslexic readers (matched for age and reading level), and how these components relate to different reading measures. Subjects performed two RAN tasks (letters and objects), and data were analyzed through a response time analysis. Our results demonstrated that impaired RAN performance in dyslexic readers mainly stem from enhanced inter-item pause times and not from difficulties at the level of post-access motor production (expressed as articulation rates). Moreover, inter-item pause times account for a significant proportion of variance in reading ability in addition to the effect of phonological awareness in the dyslexic group. This suggests that non-phonological factors may lie at the root of the association between RAN inter-item pauses and reading ability. In normal readers, RAN performance was associated with reading ability only at early ages (i.e. in the reading-matched controls), and again it was the RAN inter-item pause times that explain the association. -
Araújo, S., Faísca, L., Bramão, I., Inácio, F., Petersson, K. M., & Reis, A. (2011). Object naming in dyslexic children: More than a phonological deficit. The Journal of General Psychology, 138, 215-228. doi:10.1080/00221309.2011.582525.
Abstract
In the present study, the authors investigate how some visual factors related to early stages of visual-object naming modulate naming performance in dyslexia. The performance of dyslexic children was compared with 2 control groups—normal readers matched for age and normal readers matched for reading level—while performing a discrete naming task in which color and dimensionality of the visually presented objects were manipulated. The results showed that 2-dimensional naming performance improved for color representations in control readers but not in dyslexics. In contrast to control readers, dyslexics were also insensitive to the stimulus's dimensionality. These findings are unlikely to be explained by a phonological processing problem related to phonological access or retrieval but suggest that dyslexics have a lower capacity for coding and decoding visual surface features of 2-dimensional representations or problems with the integration of visual information stored in long-term memory. -
Araújo, S., Faísca, L., Petersson, K. M., & Reis, A. (2011). What does rapid naming tell us about dyslexia? Avances en Psicología Latinoamericana, 29, 199-213.
Abstract
This article summarizes some of the important findings from research evaluating the relationship between poor rapid naming and impaired reading performance. Substantial evidence shows that dyslexic readers have problems with rapid naming of visual items. Early research assumed that this was a consequence of phonological processing deficits, but recent findings suggest that non-phonological processes may lie at the root of the association between slow naming speed and poor reading. The hypothesis that rapid naming reflects an independent core deficit in dyslexia is supported by the main findings: (1) some dyslexics are characterized by rapid naming difficulties but intact phonological skills; (2) evidence for an independent association between rapid naming and reading competence in the dyslexic readers, when the effect of phonological skills was controlled; (3) rapid naming and phonological processing measures are not reliably correlated. Recent research also reveals greater predictive power of rapid naming, in particular the inter-item pause time, for high-frequency word reading compared to pseudoword reading in developmental dyslexia. Altogether, the results are more consistent with the view that a phonological component alone cannot account for the rapid naming performance in dyslexia. Rather, rapid naming problems may emerge from the inefficiencies in visual-orthographic processing as well as in phonological processing. -
Bramão, B., Reis, A., Petersson, K. M., & Faísca, L. (2011). The role of color in object recognition: A review and meta-analysis. Acta Psychologica, 138, 244-253. doi:10.1016/j.actpsy.2011.06.010.
Abstract
In this study, we systematically review the scientific literature on the effect of color on object recognition. Thirty-five independent experiments, comprising 1535 participants, were included in a meta-analysis. We found a moderate effect of color on object recognition (d = 0.28). Specific effects of moderator variables were analyzed and we found that color diagnosticity is the factor with the greatest moderator effect on the influence of color in object recognition; studies using color diagnostic objects showed a significant color effect (d = 0.43), whereas a marginal color effect was found in studies that used non-color diagnostic objects (d = 0.18). The present study did not permit the drawing of specific conclusions about the moderator effect of the object recognition task; while the meta-analytic review showed that color information improves object recognition mainly in studies using naming tasks (d = 0.36), the literature review revealed a large body of evidence showing positive effects of color information on object recognition in studies using a large variety of visual recognition tasks. We also found that color is important for the ability to recognize artifacts and natural objects, to recognize objects presented as types (line-drawings) or as tokens (photographs), and to recognize objects that are presented without surface details, such as texture or shadow. Taken together, the results of the meta-analysis strongly support the contention that color plays a role in object recognition. This suggests that the role of color should be taken into account in models of visual object recognition.Files private
Request files -
Bramão, I., Inácio, F., Faísca, L., Reis, A., & Petersson, K. M. (2011). The influence of color information on the recognition of color diagnostic and noncolor diagnostic objects. The Journal of General Psychology, 138(1), 49-65. doi:10.1080/00221309.2010.533718.
Abstract
In the present study, the authors explore in detail the level of visual object recognition at which perceptual color information improves the recognition of color diagnostic and noncolor diagnostic objects. To address this issue, 3 object recognition tasks, with different cognitive demands, were designed: (a) an object verification task; (b) a category verification task; and (c) a name verification task. They found that perceptual color information improved color diagnostic object recognition mainly in tasks for which access to the semantic knowledge about the object was necessary to perform the task; that is, in category and name verification. In contrast, the authors found that perceptual color information facilitates noncolor diagnostic object recognition when access to the object’s structural description from long-term memory was necessary—that is, object verification. In summary, the present study shows that the role of perceptual color information in object recognition is dependent on color diagnosticity -
Folia, V., Forkstam, C., Ingvar, M., Hagoort, P., & Petersson, K. M. (2011). Implicit artificial syntax processing: Genes, preference, and bounded recursion. Biolinguistics, 5(1/2), 105-132.
Abstract
The first objective of this study was to compare the brain network engaged by preference classification and the standard grammaticality classification after implicit artificial syntax acquisition by re-analyzing previously reported event-related fMRI data. The results show that preference and grammaticality classification engage virtually identical brain networks, including Broca’s region, consistent with previous behavioral findings. Moreover, the results showed that the effects related to artificial syntax in Broca’s region were essentially the same when masked with variability related to natural syntax processing in the same participants. The second objective was to explore CNTNAP2-related effects in implicit artificial syntax learning by analyzing behavioral and event-related fMRI data from a subsample. The CNTNAP2 gene has been linked to specific language impairment and is controlled by the FOXP2 transcription factor. CNTNAP2 is expressed in language related brain networks in the developing human brain and the FOXP2–CNTNAP2 pathway provides a mechanistic link between clinically distinct syndromes involving disrupted language. Finally, we discuss the implication of taking natural language to be a neurobiological system in terms of bounded recursion and suggest that the left inferior frontal region is a generic on-line sequence processor that unifies information from various sources in an incremental and recursive manner. -
Petersson, K. M., Forkstam, C., Inácio, F., Bramão, I., Araújo, S., Souza, A. C., Silva, S., & Castro, S. L. (2011). Artificial language learning. In A. Trevisan, & V. Wannmacher Pereira (
Eds. ), Alfabeltização e cognição (pp. 71-90). Porto Alegre, Brasil: Edipucrs.Abstract
Neste artigo fazemos uma revisão breve de investigações actuais com técnicas comportamentais e de neuroimagem funcional sobre a aprendizagem de uma linguagem artificial em crianças e adultos. Na secção final, discutimos uma possível associação entre dislexia e aprendizagem implícita. Resultados recentes sugerem que a presença de um défice ao nível da aprendizagem implícita pode contribuir para as dificuldades de leitura e escrita observadas em indivíduos disléxicos. -
Reis, A., Faísca, L., & Petersson, K. M. (2011). Literacia: Modelo para o estudo dos efeitos de uma aprendizagem específica na cognição e nas suas bases cerebrais. In A. Trevisan, J. J. Mouriño Mosquera, & V. Wannmacher Pereira (
Eds. ), Alfabeltização e cognição (pp. 23-36). Porto Alegro, Brasil: Edipucrs.Abstract
A aquisição de competências de leitura e de escrita pode ser vista como um processo formal de transmissão cultural, onde interagem factores neurobiológicos e culturais. O treino sistemático exigido pela aprendizagem da leitura e da escrita poderá produzir mudanças quantitativas e qualitativas tanto a nível cognitivo como ao nível da organização do cérebro. Estudar sujeitos iletrados e letrados representa, assim, uma oportunidade para investigar efeitos de uma aprendizagem específica no desenvolvimento cognitivo e suas bases cerebrais. Neste trabalho, revemos um conjunto de investigações comportamentais e com métodos de imagem cerebral que indicam que a literacia tem um impacto nas nossas funções cognitivas e na organização cerebral. Mais especificamente, discutiremos diferenças entre letrados e iletrados para domínios cognitivos verbais e não-verbais, sugestivas de que a arquitectura cognitiva é formatada, em parte, pela aprendizagem da leitura e da escrita. Os dados de neuroimagem funcionais e estruturais são também indicadores que a aquisição de uma ortografia alfabética interfere nos processos de organização e lateralização das funções cognitivas. -
Scheeringa, R., Fries, P., Petersson, K. M., Oostenveld, R., Grothe, I., Norris, D. G., Hagoort, P., & Bastiaansen, M. C. M. (2011). Neuronal dynamics underlying high- and low- frequency EEG oscillations contribute independently to the human BOLD signal. Neuron, 69, 572-583. doi:10.1016/j.neuron.2010.11.044.
Abstract
Work on animals indicates that BOLD is preferentially sensitive to local field potentials, and that it correlates most strongly with gamma band neuronal synchronization. Here we investigate how the BOLD signal in humans performing a cognitive task is related to neuronal synchronization across different frequency bands. We simultaneously recorded EEG and BOLD while subjects engaged in a visual attention task known to induce sustained changes in neuronal synchronization across a wide range of frequencies. Trial-by-trial BOLD luctuations correlated positively with trial-by-trial fluctuations in high-EEG gamma power (60–80 Hz) and negatively with alpha and beta power. Gamma power on the one hand, and alpha and beta power on the other hand, independently contributed to explaining BOLD variance. These results indicate that the BOLD-gamma coupling observed in animals can be extrapolated to humans performing a task and that neuronal dynamics underlying high- and low-frequency synchronization contribute independently to the BOLD signal.Additional information
mmc1.pdf -
Tesink, C. M. J. Y., Buitelaar, J. K., Petersson, K. M., Van der Gaag, R. J., Teunisse, J.-P., & Hagoort, P. (2011). Neural correlates of language comprehension in autism spectrum disorders: When language conflicts with world knowledge. Neuropsychologia, 49, 1095-1104. doi:10.1016/j.neuropsychologia.2011.01.018.
Abstract
In individuals with ASD, difficulties with language comprehension are most evident when higher-level semantic-pragmatic language processing is required, for instance when context has to be used to interpret the meaning of an utterance. Until now, it is unclear at what level of processing and for what type of context these difficulties in language comprehension occur. Therefore, in the current fMRI study, we investigated the neural correlates of the integration of contextual information during auditory language comprehension in 24 adults with ASD and 24 matched control participants. Different levels of context processing were manipulated by using spoken sentences that were correct or contained either a semantic or world knowledge anomaly. Our findings demonstrated significant differences between the groups in inferior frontal cortex that were only present for sentences with a world knowledge anomaly. Relative to the ASD group, the control group showed significantly increased activation in left inferior frontal gyrus (LIFG) for sentences with a world knowledge anomaly compared to correct sentences. This effect possibly indicates reduced integrative capacities of the ASD group. Furthermore, world knowledge anomalies elicited significantly stronger activation in right inferior frontal gyrus (RIFG) in the control group compared to the ASD group. This additional RIFG activation probably reflects revision of the situation model after new, conflicting information. The lack of recruitment of RIFG is possibly related to difficulties with exception handling in the ASD group.Files private
Request files -
De Vries, M., Christiansen, M. H., & Petersson, K. M. (2011). Learning recursion: Multiple nested and crossed dependencies. Biolinguistics, 5(1/2), 010-035.
Abstract
Language acquisition in both natural and artificial language learning settings crucially depends on extracting information from sequence input. A shared sequence learning mechanism is thus assumed to underlie both natural and artificial language learning. A growing body of empirical evidence is consistent with this hypothesis. By means of artificial language learning experiments, we may therefore gain more insight in this shared mechanism. In this paper, we review empirical evidence from artificial language learning and computational modelling studies, as well as natural language data, and suggest that there are two key factors that help determine processing complexity in sequence learning, and thus in natural language processing. We propose that the specific ordering of non-adjacent dependencies (i.e., nested or crossed), as well as the number of non-adjacent dependencies to be resolved simultaneously (i.e., two or three) are important factors in gaining more insight into the boundaries of human sequence learning; and thus, also in natural language processing. The implications for theories of linguistic competence are discussed. -
Carlsson, K., Petersson, K. M., Lundqvist, D., Karlsson, A., Ingvar, M., & Öhman, A. (2004). Fear and the amygdala: manipulation of awareness generates differential cerebral responses to phobic and fear-relevant (but nonfeared) stimuli. Emotion, 4(4), 340-353. doi:10.1037/1528-3542.4.4.340.
Abstract
Rapid response to danger holds an evolutionary advantage. In this positron emission tomography study, phobics were exposed to masked visual stimuli with timings that either allowed awareness or not of either phobic, fear-relevant (e.g., spiders to snake phobics), or neutral images. When the timing did not permit awareness, the amygdala responded to both phobic and fear-relevant stimuli. With time for more elaborate processing, phobic stimuli resulted in an addition of an affective processing network to the amygdala activity, whereas no activity was found in response to fear-relevant stimuli. Also, right prefrontal areas appeared deactivated, comparing aware phobic and fear-relevant conditions. Thus, a shift from top-down control to an affectively driven system optimized for speed was observed in phobic relative to fear-relevant aware processing. -
Gisselgard, J., Petersson, K. M., & Ingvar, M. (2004). The irrelevant speech effect and working memory load. NeuroImage, 22, 1107-1116. doi:10.1016/j.neuroimage.2004.02.031.
Abstract
Irrelevant speech impairs the immediate serial recall of visually presented material. Previously, we have shown that the irrelevant speech effect (ISE) was associated with a relative decrease of regional blood flow in cortical regions subserving the verbal working memory, in particular the superior temporal cortex. In this extension of the previous study, the working memory load was increased and an increased activity as a response to irrelevant speech was noted in the dorsolateral prefrontal cortex. We suggest that the two studies together provide some basic insights as to the nature of the irrelevant speech effect. Firstly, no area in the brain can be ascribed as the single locus of the irrelevant speech effect. Instead, the functional neuroanatomical substrate to the effect can be characterized in terms of changes in networks of functionally interrelated areas. Secondly, the areas that are sensitive to the irrelevant speech effect are also generically activated by the verbal working memory task itself. Finally, the impact of irrelevant speech and related brain activity depends on working memory load as indicated by the differences between the present and the previous study. From a brain perspective, the irrelevant speech effect may represent a complex phenomenon that is a composite of several underlying mechanisms, which depending on the working memory load, include top-down inhibition as well as recruitment of compensatory support and control processes. We suggest that, in the low-load condition, a selection process by an inhibitory top-down modulation is sufficient, whereas in the high-load condition, at or above working memory span, auxiliary adaptive cognitive resources are recruited as compensation -
Gonzalez da Silva, C., Petersson, K. M., Faísca, L., Ingvar, M., & Reis, A. (2004). The effects of literacy and education on the quantitative and qualitative aspects of semantic verbal fluency. Journal of Clinical and Experimental Neuropsychology, 26(2), 266-277. doi:10.1076/jcen.26.2.266.28089.
Abstract
Semantic verbal fluency tasks are commonly used in neuropsychological assessment. Investigations of the influence of level of literacy have not yielded consistent results in the literature. This prompted us to investigate the ecological relevance of task specifics, in particular, the choice of semantic criteria used. Two groups of literate and illiterate subjects were compared on two verbal fluency tasks using different semantic criteria. The performance on a food criterion (supermarket fluency task), considered more ecologically relevant for the two literacy groups, and an animal criterion (animal fluency task) were compared. The data were analysed using both quantitative and qualitative measures. The quantitative analysis indicated that the two literacy groups performed equally well on the supermarket fluency task. In contrast, results differed significantly during the animal fluency task. The qualitative analyses indicated differences between groups related to the strategies used, especially with respect to the animal fluency task. The overall results suggest that there is not a substantial difference between literate and illiterate subjects related to the fundamental workings of semantic memory. However, there is indication that the content of semantic memory reflects differences in shared cultural background - in other words, formal education –, as indicated by the significant interaction between level of literacy and semantic criterion. -
Hagoort, P., Hald, L. A., Bastiaansen, M. C. M., & Petersson, K. M. (2004). Integration of word meaning and world knowledge in language comprehension. Science, 304(5669), 438-441. doi:10.1126/science.1095455.
Abstract
Although the sentences that we hear or read have meaning, this does not necessarily mean that they are also true. Relatively little is known about the critical brain structures for, and the relative time course of, establishing the meaning and truth of linguistic expressions. We present electroencephalogram data that show the rapid parallel integration of both semantic and world
knowledge during the interpretation of a sentence. Data from functional magnetic resonance imaging revealed that the left inferior prefrontal cortex is involved in the integration of both meaning and world knowledge. Finally, oscillatory brain responses indicate that the brain keeps a record of what makes a sentence hard to interpret. -
Meulenbroek, O., Petersson, K. M., Voermans, N., Weber, B., & Fernández, G. (2004). Age differences in neural correlates of route encoding and route recognition. Neuroimage, 22, 1503-1514. doi:10.1016/j.neuroimage.2004.04.007.
Abstract
Spatial memory deficits are core features of aging-related changes in cognitive abilities. The neural correlates of these deficits are largely unknown. In the present study, we investigated the neural underpinnings of age-related differences in spatial memory by functional MRI using a navigational memory task with route encoding and route recognition conditions. We investigated 20 healthy young (18 - 29 years old) and 20 healthy old adults (53 - 78 years old) in a random effects analysis. Old subjects showed slightly poorer performance than young subjects. Compared to the control condition, route encoding and route recognition showed activation of the dorsal and ventral visual processing streams and the frontal eye fields in both groups of subjects. Compared to old adults, young subjects showed during route encoding stronger activations in the dorsal and the ventral visual processing stream (supramarginal gyrus and posterior fusiform/parahippocampal areas). In addition, young subjects showed weaker anterior parahippocampal activity during route recognition compared to the old group. In contrast, old compared to young subjects showed less suppressed activity in the left perisylvian region and the anterior cingulate cortex during route encoding. Our findings suggest that agerelated navigational memory deficits might be caused by less effective route encoding based on reduced posterior fusiform/parahippocampal and parietal functionality combined with diminished inhibition of perisylvian and anterior cingulate cortices correlated with less effective suppression of task-irrelevant information. In contrast, age differences in neural correlates of route recognition seem to be rather subtle. Old subjects might show a diminished familiarity signal during route recognition in the anterior parahippocampal region. -
Petersson, K. M., Forkstam, C., & Ingvar, M. (2004). Artificial syntactic violations activate Broca’s region. Cognitive Science, 28(3), 383-407. doi:10.1207/s15516709cog2803_4.
Abstract
In the present study, using event-related functional magnetic resonance imaging, we investigated a group of participants on a grammaticality classification task after they had been exposed to well-formed consonant strings generated from an artificial regular grammar.We used an implicit acquisition paradigm in which the participants were exposed to positive examples. The objective of this studywas to investigate whether brain regions related to language processing overlap with the brain regions activated by the grammaticality classification task used in the present study. Recent meta-analyses of functional neuroimaging studies indicate that syntactic processing is related to the left inferior frontal gyrus (Brodmann's areas 44 and 45) or Broca's region. In the present study, we observed that artificial grammaticality violations activated Broca's region in all participants. This observation lends some support to the suggestions that artificial grammar learning represents a model for investigating aspects of language learning in infants. -
Petersson, K. M. (2004). The human brain, language, and implicit learning. Impuls, Tidsskrift for psykologi (Norwegian Journal of Psychology), 58(3), 62-72.
-
Petrovic, P., Petersson, K. M., Hansson, P., & Ingvar, M. (2004). Brainstem involvement in the initial response to pain. NeuroImage, 22, 995-1005. doi:10.1016/j.neuroimage.2004.01.046.
Abstract
The autonomic responses to acute pain exposure usually habituate rapidly while the subjective ratings of pain remain high for more extended periods of time. Thus, systems involved in the autonomic response to painful stimulation, for example the hypothalamus and the brainstem, would be expected to attenuate the response to pain during prolonged stimulation. This suggestion is in line with the hypothesis that the brainstem is specifically involved in the initial response to pain. To probe this hypothesis, we performed a positron emission tomography (PET) study where we scanned subjects during the first and second minute of a prolonged tonic painful cold stimulation (cold pressor test) and nonpainful cold stimulation. Galvanic skin response (GSR) was recorded during the PET scanning as an index of autonomic sympathetic response. In the main effect of pain, we observed increased activity in the thalamus bilaterally, in the contralateral insula and in the contralateral anterior cingulate cortex but no significant increases in activity in the primary or secondary somatosensory cortex. The autonomic response (GSR) decreased with stimulus duration. Concomitant with the autonomic response, increased activity was observed in brainstem and hypothalamus areas during the initial vs. the late stimulation. This effect was significantly stronger for the painful than for the cold stimulation. Activity in the brainstem showed pain-specific covariation with areas involved in pain processing, indicating an interaction between the brainstem and cortical pain networks. The findings indicate that areas in the brainstem are involved in the initial response to noxious stimulation, which is also characterized by an increased sympathetic response. -
Petrovic, P., Carlsson, K., Petersson, K. M., Hansson, P., & Ingvar, M. (2004). Context-dependent deactivation of the amygdala during pain. Journal of Cognitive Neuroscience, 16, 1289-1301.
Abstract
The amygdala has been implicated in fundamental functions for the survival of the organism, such as fear and pain. In accord with this, several studies have shown increased amygdala activity during fear conditioning and the processing of fear-relevant material in human subjects. In contrast, functional neuroimaging studies of pain have shown a decreased amygdala activity. It has previously been proposed that the observed deactivations of the amygdala in these studies indicate a cognitive strategy to adapt to a distressful but in the experimental setting unavoidable painful event. In this positron emission tomography study, we show that a simple contextual manipulation, immediately preceding a painful stimulation, that increases the anticipated duration of the painful event leads to a decrease in amygdala activity and modulates the autonomic response during the noxious stimulation. On a behavioral level, 7 of the 10 subjects reported that they used coping strategies more intensely in this context. We suggest that the altered activity in the amygdala may be part of a mechanism to attenuate pain-related stress responses in a context that is perceived as being more aversive. The study also showed an increased activity in the rostral part of anterior cingulate cortex in the same context in which the amygdala activity decreased, further supporting the idea that this part of the cingulate cortex is involved in the modulation of emotional and pain networks -
Voermans, N. C., Petersson, K. M., Daudey, L., Weber, B., Van Spaendonck, K. P., Kremer, H. P. H., & Fernández, G. (2004). Interaction between the Human Hippocampus and the Caudate Nucleus during Route Recognition. Neuron, 43, 427-435. doi:10.1016/j.neuron.2004.07.009.
Abstract
Navigation through familiar environments can rely upon distinct neural representations that are related to different memory systems with either the hippo-campus or the caudate nucleus at their core. However,it is a fundamental question whether and how these systems interact during route recognition. To address this issue, we combined a functional neuroimaging approach with a naturally occurring, well-controlled humanmodel of caudate nucleus dysfunction (i.e., pre-clinical and early-stage Huntington’s disease). Our results reveal a noncompetitive interaction so that the hippocampus compensates for gradual caudate nucleus dysfunction with a gradual activity increase,maintaining normal behavior. Furthermore, we revealed an interaction between medial temporal and caudate activity in healthy subjects, which was adaptively modified in Huntington patients to allow compensatory hippocampal processing. Thus, the two memory systems contribute in a noncompetitive, co operative manner to route recognition, which enables Polthe hippocampus to compensate seamlessly for the functional degradation of the caudate nucleus -
Petersson, K. M., Elfgren, C., & Ingvar, M. (1999). Dynamic changes in the functional anatomy of the human brain during recall of abstract designs related to practice. Neuropsychologia, 37, 567-587.
Abstract
In the present PET study we explore some functional aspects of the interaction between attentional/control processes and learning/memory processes. The network of brain regions supporting recall of abstract designs were studied in a less practiced and in a well practiced state. The results indicate that automaticity, i.e., a decreased dependence on attentional and working memory resources, develops as a consequence of practice. This corresponds to the practice related decreases of activity in the prefrontal, anterior cingulate, and posterior parietal regions. In addition, the activity of the medial temporal regions decreased as a function of practice. This indicates an inverse relation between the strength of encoding and the activation of the MTL during retrieval. Furthermore, the pattern of practice related increases in the auditory, posterior insular-opercular extending into perisylvian supra marginal region, and the right mid occipito-temporal region, may reflect a lower degree of inhibitory attentional modulation of task irrelevant processing and more fully developed representations of the abstract designs, respectively. We also suggest that free recall is dependent on bilateral prefrontal processing, in particular non-automatic free recall. The present results cofirm previous functional neuroimaging studies of memory retrieval indicating that recall is subserved by a network of interacting brain regions. Furthermore, the results indicate that some components of the neural network subserving free recall may have a dynamic role and that there is a functional restructuring of the information processing networks during the learning process. -
Petersson, K. M., Reis, A., Castro-Caldas, A., & Ingvar, M. (1999). Effective auditory-verbal encoding activates the left prefrontal and the medial temporal lobes: A generalization to illiterate subjects. NeuroImage, 10, 45-54. doi:10.1006/nimg.1999.0446.
Abstract
Recent event-related FMRI studies indicate that the prefrontal (PFC) and the medial temporal lobe (MTL) regions are more active during effective encoding than during ineffective encoding. The within-subject design and the use of well-educated young college students in these studies makes it important to replicate these results in other study populations. In this PET study, we used an auditory word-pair association cued-recall paradigm and investigated a group of healthy upper middle-aged/older illiterate women. We observed a positive correlation between cued-recall success and the regional cerebral blood flow of the left inferior PFC (BA 47) and the MTLs. Specifically, we used the cuedrecall success as a covariate in a general linear model and the results confirmed that the left inferior PFC and the MTLare more active during effective encoding than during ineffective encoding. These effects were observed during encoding of both semantically and phonologically related word pairs, indicating that these effects are robust in the studied population, that is, reproducible within group. These results generalize the results of Brewer et al. (1998, Science 281, 1185– 1187) and Wagner et al. (1998, Science 281, 1188–1191) to an upper middle aged/older illiterate population. In addition, the present study indicates that effective relational encoding correlates positively with the activity of the anterior medial temporal lobe regions. -
Petersson, K. M., Elfgren, C., & Ingvar, M. (1999). Learning-related effects and functional neuroimaging. Human Brain Mapping, 7, 234-243. doi:10.1002/(SICI)1097-0193(1999)7:4<234:AID-HBM2>3.0.CO;2-O.
Abstract
A fundamental problem in the study of learning is that learning-related changes may be confounded by nonspecific time effects. There are several strategies for handling this problem. This problem may be of greater significance in functional magnetic resonance imaging (fMRI) compared to positron emission tomography (PET). Using the general linear model, we describe, compare, and discuss two approaches for separating learning-related from nonspecific time effects. The first approach makes assumptions on the general behavior of nonspecific effects and explicitly models these effects, i.e., nonspecific time effects are incorporated as a linear or nonlinear confounding covariate in the statistical model. The second strategy makes no a priori assumption concerning the form of nonspecific time effects, but implicitly controls for nonspecific effects using an interaction approach, i.e., learning effects are assessed with an interaction contrast. The two approaches depend on specific assumptions and have specific limitations. With certain experimental designs, both approaches may be used and the results compared, lending particular support to effects that are independent of the method used. A third and perhaps better approach that sometimes may be practically unfeasible is to use a completely temporally balanced experimental design. The choice of approach may be of particular importance when learning related effects are studied with fMRI. -
Petersson, K. M., Nichols, T. E., Poline, J.-B., & Holmes, A. P. (1999). Statistical limitations in functional neuroimaging I: Non-inferential methods and statistical models. Philosofical Transactions of the Royal Soeciety B, 354, 1239-1260.
-
Petersson, K. M., Nichols, T. E., Poline, J.-B., & Holmes, A. P. (1999). Statistical limitations in functional neuroimaging II: Signal detection and statistical inference. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 354, 1261-1282.
-
Petrovic, P., Ingvar, M., Stone-Elander, S., Petersson, K. M., & Hansson, P. (1999). A PET activation study of dynamic mechanical allodynia in patients with mononeuropathy. Pain, 83, 459-470.
Abstract
The objective of this study was to investigate the central processing of dynamic mechanical allodynia in patients with mononeuropathy. Regional cerebral bloodflow, as an indicator of neuronal activity, was measured with positron emission tomography. Paired comparisons were made between three different states; rest, allodynia during brushing the painful skin area, and brushing of the homologous contralateral area. Bilateral activations were observed in the primary somatosensory cortex (S1) and the secondary somatosensory cortex (S2) during allodynia compared to rest. The S1 activation contralateral to the site of the stimulus was more expressed during allodynia than during innocuous touch. Significant activations of the contralateral posterior parietal cortex, the periaqueductal gray (PAG), the thalamus bilaterally and motor areas were also observed in the allodynic state compared to both non-allodynic states. In the anterior cingulate cortex (ACC) there was only a suggested activation when the allodynic state was compared with the non-allodynic states. In order to account for the individual variability in the intensity of allodynia and ongoing spontaneous pain, rCBF was regressed on the individually reported pain intensity, and significant covariations were observed in the ACC and the right anterior insula. Significantly decreased regional blood flow was observed bilaterally in the medial and lateral temporal lobe as well as in the occipital and posterior cingulate cortices when the allodynic state was compared to the non-painful conditions. This finding is consistent with previous studies suggesting attentional modulation and a central coping strategy for known and expected painful stimuli. Involvement of the medial pain system has previously been reported in patients with mononeuropathy during ongoing spontaneous pain. This study reveals a bilateral activation of the lateral pain system as well as involvement of the medial pain system during dynamic mechanical allodynia in patients with mononeuropathy.
Share this page