Publications

Displaying 1 - 17 of 17
  • Zhu, Z., Bastiaansen, M. C. M., Hakun, J. G., Petersson, K. M., Wang, S., & Hagoort, P. (2019). Semantic unification modulates N400 and BOLD signal change in the brain: A simultaneous EEG-fMRI study. Journal of Neurolinguistics, 52: 100855. doi:10.1016/j.jneuroling.2019.100855.

    Abstract

    Semantic unification during sentence comprehension has been associated with amplitude change of the N400 in event-related potential (ERP) studies, and activation in the left inferior frontal gyrus (IFG) in functional magnetic resonance imaging (fMRI) studies. However, the specificity of this activation to semantic unification remains unknown. To more closely examine the brain processes involved in semantic unification, we employed simultaneous EEG-fMRI to time-lock the semantic unification related N400 change, and integrated trial-by-trial variation in both N400 and BOLD change beyond the condition-level BOLD change difference measured in traditional fMRI analyses. Participants read sentences in which semantic unification load was parametrically manipulated by varying cloze probability. Separately, ERP and fMRI results replicated previous findings, in that semantic unification load parametrically modulated the amplitude of N400 and cortical activation. Integrated EEG-fMRI analyses revealed a different pattern in which functional activity in the left IFG and bilateral supramarginal gyrus (SMG) was associated with N400 amplitude, with the left IFG activation and bilateral SMG activation being selective to the condition-level and trial-level of semantic unification load, respectively. By employing the EEG-fMRI integrated analyses, this study among the first sheds light on how to integrate trial-level variation in language comprehension.
  • Carlsson, K., Andersson, J., Petrovic, P., Petersson, K. M., Öhman, A., & Ingvar, M. (2006). Predictability modulates the affective and sensory-discriminative neural processing of pain. NeuroImage, 32(4), 1804-1814. doi:10.1016/j.neuroimage.2006.05.027.

    Abstract

    Knowing what is going to happen next, that is, the capacity to predict upcoming events, modulates the extent to which aversive stimuli induce stress and anxiety. We explored this issue by manipulating the temporal predictability of aversive events by means of a visual cue, which was either correlated or uncorrelated with pain stimuli (electric shocks). Subjects reported lower levels of anxiety, negative valence and pain intensity when shocks were predictable. In addition to attenuate focus on danger, predictability allows for correct temporal estimation of, and selective attention to, the sensory input. With functional magnetic resonance imaging, we found that predictability was related to enhanced activity in relevant sensory-discriminative processing areas, such as the primary and secondary sensory cortex and posterior insula. In contrast, the unpredictable more aversive context was correlated to brain activity in the anterior insula and the orbitofrontal cortex, areas associated with affective pain processing. This context also prompted increased activity in the posterior parietal cortex and lateral prefrontal cortex that we attribute to enhanced alertness and sustained attention during unpredictability.
  • Forkstam, C., Hagoort, P., Fernandez, G., Ingvar, M., & Petersson, K. M. (2006). Neural correlates of artificial syntactic structure classification. NeuroImage, 32(2), 956-967. doi:10.1016/j.neuroimage.2006.03.057.

    Abstract

    The human brain supports acquisition mechanisms that extract structural regularities implicitly from experience without the induction of an explicit model. It has been argued that the capacity to generalize to new input is based on the acquisition of abstract representations, which reflect underlying structural regularities in the input ensemble. In this study, we explored the outcome of this acquisition mechanism, and to this end, we investigated the neural correlates of artificial syntactic classification using event-related functional magnetic resonance imaging. The participants engaged once a day during an 8-day period in a short-term memory acquisition task in which consonant-strings generated from an artificial grammar were presented in a sequential fashion without performance feedback. They performed reliably above chance on the grammaticality classification tasks on days 1 and 8 which correlated with a corticostriatal processing network, including frontal, cingulate, inferior parietal, and middle occipital/occipitotemporal regions as well as the caudate nucleus. Part of the left inferior frontal region (BA 45) was specifically related to syntactic violations and showed no sensitivity to local substring familiarity. In addition, the head of the caudate nucleus correlated positively with syntactic correctness on day 8 but not day 1, suggesting that this region contributes to an increase in cognitive processing fluency.
  • Jones, S., Nyberg, L., Sandblom, J., Stigsdotter Neely, A., Ingvar, M., Petersson, K. M., & Bäckman, L. (2006). Cognitive and neural plasticity in aging: General and task-specific limitations. Neuroscience and Biobehavioral Reviews, 30(6), 864-871. doi:10.1016/j.neubiorev.2006.06.012.

    Abstract

    There is evidence for cognitive as well as neural plasticity across the adult life span, although aging is associated with certain constraints on plasticity. In the current paper, we argue that the age-related reduction in cognitive plasticity may be due to (a) deficits in general processing resources, and (b) failure to engage in task-relevant cognitive operations. Memory-training research suggests that age-related processing deficits (e.g., executive functions, speed) hinder older adults from utilizing mnemonic techniques as efficiently as the young, and that this age difference is reflected by diminished frontal activity during mnemonic use. Additional constraints on memory plasticity in old age are related to difficulties that are specific to the task, such as creating visual images, as well as in binding together the information to be remembered. These deficiencies are paralleled by reduced activity in occipito-parietal and medial–temporal regions, respectively. Future attempts to optimize intervention-related gains in old age should consider targeting both general processing and task-specific origins of age-associated reductions in cognitive plasticity.
  • Lind, J., Persson, J., Ingvar, M., Larsson, A., Cruts, M., Van Broeckhoven, C., Adolfsson, R., Bäckman, L., Nilsson, L.-G., Petersson, K. M., & Nyberg, L. (2006). Reduced functional brain activity response in cognitively intact apolipoprotein E ε4 carriers. Brain, 129(5), 1240-1248. doi:10.1093/brain/awl054.

    Abstract

    The apolipoprotein E {varepsilon}4 (APOE {varepsilon}4) is the main known genetic risk factor for Alzheimer's disease. Genetic assessments in combination with other diagnostic tools, such as neuroimaging, have the potential to facilitate early diagnosis. In this large-scale functional MRI (fMRI) study, we have contrasted 30 APOE {varepsilon}4 carriers (age range: 49–74 years; 19 females), of which 10 were homozygous for the {varepsilon}4 allele, and 30 non-carriers with regard to brain activity during a semantic categorization task. Test groups were closely matched for sex, age and education. Critically, both groups were cognitively intact and thus symptom-free of Alzheimer's disease. APOE {varepsilon}4 carriers showed reduced task-related responses in the left inferior parietal cortex, and bilaterally in the anterior cingulate region. A dose-related response was observed in the parietal area such that diminution was most pronounced in homozygous compared with heterozygous carriers. In addition, contrasts of processing novel versus familiar items revealed an abnormal response in the right hippocampus in the APOE {varepsilon}4 group, mainly expressed as diminished sensitivity to the relative novelty of stimuli. Collectively, these findings indicate that genetic risk translates into reduced functional brain activity, in regions pertinent to Alzheimer's disease, well before alterations can be detected at the behavioural level.
  • Petersson, K. M., & Reis, A. (2006). Characteristics of illiterate and literate cognitive processing: Implications of brain- behavior co-constructivism. In P. B. Baltes, P. Reuter-Lorenz, & F. Rösler (Eds.), Lifespan development and the brain: The perspective of biocultural co-constructivism (pp. 279-305). Cambridge: Cambridge University Press.

    Abstract

    Literacy and education represent essential aspects of contemporary society and subserve important aspects of socialization and cultural transmission. The study of illiterate subjects represents one approach to investigate the interactions between neurobiological and cultural factors in cognitive development, individual learning, and their influence on the functional organization of the brain. In this chapter we review some recent cognitive, neuroanatomic, and functional neuroimaging results indicating that formal education influences important aspects of the human brain. Taken together this provides strong support for the idea that the brain is modulated by literacy and formal education, which in turn change the brains capacity to interact with its environment, including the individual's contemporary culture. In other words, the individual is able to participate in, interact with, and actively contribute to the process of cultural transmission in new ways through acquired cognitive skills.
  • Petersson, K. M., Gisselgard, J., Gretzer, M., & Ingvar, M. (2006). Interaction between a verbal working memory network and the medial temporal lobe. NeuroImage, 33(4), 1207-1217. doi:10.1016/j.neuroimage.2006.07.042.

    Abstract

    The irrelevant speech effect illustrates that sounds that are irrelevant to a visually presented short-term memory task still interfere with neuronal function. In the present study we explore the functional and effective connectivity of such interference. The functional connectivity analysis suggested an interaction between the level of irrelevant speech and the correlation between in particular the left superior temporal region, associated with verbal working memory, and the left medial temporal lobe. Based on this psycho-physiological interaction, and to broaden the understanding of this result, we performed a network analysis, using a simple network model for verbal working memory, to analyze its interaction with the medial temporal lobe memory system. The results showed dissociations in terms of network interactions between frontal as well as parietal and temporal areas in relation to the medial temporal lobe. The results of the present study suggest that a transition from phonological loop processing towards an engagement of episodic processing might take place during the processing of interfering irrelevant sounds. We speculate that, in response to the irrelevant sounds, this reflects a dynamic shift in processing as suggested by a closer interaction between a verbal working memory system and the medial temporal lobe memory system.
  • Piekema, C., Kessels, R. P. C., Mars, R. B., Petersson, K. M., & Fernández, G. (2006). The right hippocampus participates in short-term memory maintenance of object–location associations. NeuroImage, 33(1), 374-382. doi:10.1016/j.neuroimage.2006.06.035.

    Abstract

    Doubts have been cast on the strict dissociation between short- and long-term memory systems. Specifically, several neuroimaging studies have shown that the medial temporal lobe, a region almost invariably associated with long-term memory, is involved in active short-term memory maintenance. Furthermore, a recent study in hippocampally lesioned patients has shown that the hippocampus is critically involved in associating objects and their locations, even when the delay period lasts only 8 s. However, the critical feature that causes the medial temporal lobe, and in particular the hippocampus, to participate in active maintenance is still unknown. This study was designed in order to explore hippocampal involvement in active maintenance of spatial and non-spatial associations. Eighteen participants performed a delayed-match-to-sample task in which they had to maintain either object–location associations, color–number association, single colors, or single locations. Whole-brain activity was measured using event-related functional magnetic resonance imaging and analyzed using a random effects model. Right lateralized hippocampal activity was evident when participants had to maintain object–location associations, but not when they had to maintain object–color associations or single items. The present results suggest a hippocampal involvement in active maintenance when feature combinations that include spatial information have to be maintained online.
  • Reis, A., Faísca, L., Ingvar, M., & Petersson, K. M. (2006). Color makes a difference: Two-dimensional object naming in literate and illiterate subjects. Brain and Cognition, 60, 49-54. doi:10.1016/j.bandc.2005.09.012.

    Abstract

    Previous work has shown that illiterate subjects are better at naming two-dimensional representations of real objects when presented as colored photos as compared to black and white drawings. This raises the question if color or textural details selectively improve object recognition and naming in illiterate compared to literate subjects. In this study, we investigated whether the surface texture and/or color of objects is used to access stored object knowledge in illiterate subjects. A group of illiterate subjects and a matched literate control group were compared on an immediate object naming task with four conditions: color and black and white (i.e., grey-scaled) photos, as well as color and black and white (i.e., grey-scaled) drawings of common everyday objects. The results show that illiterate subjects perform significantly better when the stimuli are colored and this effect is independent of the photographic detail. In addition, there were significant differences between the literacy groups in the black and white condition for both drawings and photos. These results suggest that color object information contributes to object recognition. This effect was particularly prominent in the illiterate group
  • Takashima, A., Petersson, K. M., Rutters, F., Tendolkar, I., Jensen, O., Zwarts, M. J., McNaughton, B. L., & Fernández, G. (2006). Declarative memory consolidation in humans: A prospective functional magnetic resonance imaging study. Proceedings of the National Academy of Sciences of the United States of America [PNAS], 103(3), 756-761.

    Abstract

    Retrieval of recently acquired declarative memories depends on
    the hippocampus, but with time, retrieval is increasingly sustainable
    by neocortical representations alone. This process has been
    conceptualized as system-level consolidation. Using functional
    magnetic resonance imaging, we assessed over the course of three
    months how consolidation affects the neural correlates of memory
    retrieval. The duration of slow-wave sleep during a nap/rest
    period after the initial study session and before the first scan
    session on day 1 correlated positively with recognition memory
    performance for items studied before the nap and negatively with
    hippocampal activity associated with correct confident recognition.
    Over the course of the entire study, hippocampal activity for
    correct confident recognition continued to decrease, whereas activity
    in a ventral medial prefrontal region increased. These findings,
    together with data obtained in rodents, may prompt a
    revision of classical consolidation theory, incorporating a transfer
    of putative linking nodes from hippocampal to prelimbic prefrontal
    areas.
  • Carlsson, K., Petrovic, P., Skare, S., Petersson, K. M., & Ingvar, M. (2000). Tickling expectations: Neural processing in anticipation of a sensory stimulus. Journal of Cognitive Neuroscience, 12(4), 691-703. doi:10.1162/089892900562318.
  • Ingvar, M., & Petersson, K. M. (2000). Functional maps and brain networks. In A. W. Toga (Ed.), Brain mapping: The systems (pp. 111-140). San Diego: Academic Press.
  • Lansner, A., Sandberg, A., Petersson, K. M., & Ingvar, M. (2000). On forgetful attractor network memories. In H. Malmgren, M. Borga, & L. Niklasson (Eds.), Artificial neural networks in medicine and biology: Proceedings of the ANNIMAB-1 Conference, Göteborg, Sweden, 13-16 May 2000 (pp. 54-62). Heidelberg: Springer Verlag.

    Abstract

    A recurrently connected attractor neural network with a Hebbian learning rule is currently our best ANN analogy for a piece cortex. Functionally biological memory operates on a spectrum of time scales with regard to induction and retention, and it is modulated in complex ways by sub-cortical neuromodulatory systems. Moreover, biological memory networks are commonly believed to be highly distributed and engage many co-operating cortical areas. Here we focus on the temporal aspects of induction and retention of memory in a connectionist type attractor memory model of a piece of cortex. A continuous time, forgetful Bayesian-Hebbian learning rule is described and compared to the characteristics of LTP and LTD seen experimentally. More generally, an attractor network implementing this learning rule can operate as a long-term, intermediate-term, or short-term memory. Modulation of the print-now signal of the learning rule replicates some experimental memory phenomena, like e.g. the von Restorff effect.
  • Petersson, K. M., Reis, A., Askelöf, S., Castro-Caldas, A., & Ingvar, M. (2000). Language processing modulated by literacy: A network analysis of verbal repetition in literate and illiterate subjects. Journal of Cognitive Neuroscience, 12(3), 364-382. doi:10.1162/089892900562147.
  • Petrovic, P., Petersson, K. M., Ghatan, P., Stone-Elander, S., & Ingvar, M. (2000). Pain related cerebral activation is altered by a distracting cognitive task. Pain, 85, 19-30.

    Abstract

    It has previously been suggested that the activity in sensory regions of the brain can be modulated by attentional mechanisms during parallel cognitive processing. To investigate whether such attention-related modulations are present in the processing of pain, the regional cerebral blood ¯ow was measured using [15O]butanol and positron emission tomography in conditions involving both pain and parallel cognitive demands. The painful stimulus consisted of the standard cold pressor test and the cognitive task was a computerised perceptual maze test. The activations during the maze test reproduced findings in previous studies of the same cognitive task. The cold pressor test evoked signi®cant activity in the contralateral S1, and bilaterally in the somatosensory association areas (including S2), the ACC and the mid-insula. The activity in the somatosensory association areas and periaqueductal gray/midbrain were significantly modified, i.e. relatively decreased, when the subjects also were performing the maze task. The altered activity was accompanied with significantly lower ratings of pain during the cognitive task. In contrast, lateral orbitofrontal regions showed a relative increase of activity during pain combined with the maze task as compared to only pain, which suggests the possibility of the involvement of frontal cortex in modulation of regions processing pain
  • Sandberg, A., Lansner, A., Petersson, K. M., & Ekeberg, Ö. (2000). A palimpsest memory based on an incremental Bayesian learning rule. Neurocomputing, 32(33), 987-994. doi:10.1016/S0925-2312(00)00270-8.

    Abstract

    Capacity limited memory systems need to gradually forget old information in order to avoid catastrophic forgetting where all stored information is lost. This can be achieved by allowing new information to overwrite old, as in the so-called palimpsest memory. This paper describes a new such learning rule employed in an attractor neural network. The network does not exhibit catastrophic forgetting, has a capacity dependent on the learning time constant and exhibits recency e!ects in retrieval
  • Sandberg, A., Lansner, A., Petersson, K. M., & Ekeberg, Ö. (2000). A palimpsest memory based on an incremental Bayesian learning rule. In J. M. Bower (Ed.), Computational Neuroscience: Trends in Research 2000 (pp. 987-994). Amsterdam: Elsevier.

Share this page