Publications

Displaying 1 - 23 of 23
  • Carlsson, K., Andersson, J., Petrovic, P., Petersson, K. M., Öhman, A., & Ingvar, M. (2006). Predictability modulates the affective and sensory-discriminative neural processing of pain. NeuroImage, 32(4), 1804-1814. doi:10.1016/j.neuroimage.2006.05.027.

    Abstract

    Knowing what is going to happen next, that is, the capacity to predict upcoming events, modulates the extent to which aversive stimuli induce stress and anxiety. We explored this issue by manipulating the temporal predictability of aversive events by means of a visual cue, which was either correlated or uncorrelated with pain stimuli (electric shocks). Subjects reported lower levels of anxiety, negative valence and pain intensity when shocks were predictable. In addition to attenuate focus on danger, predictability allows for correct temporal estimation of, and selective attention to, the sensory input. With functional magnetic resonance imaging, we found that predictability was related to enhanced activity in relevant sensory-discriminative processing areas, such as the primary and secondary sensory cortex and posterior insula. In contrast, the unpredictable more aversive context was correlated to brain activity in the anterior insula and the orbitofrontal cortex, areas associated with affective pain processing. This context also prompted increased activity in the posterior parietal cortex and lateral prefrontal cortex that we attribute to enhanced alertness and sustained attention during unpredictability.
  • Forkstam, C., Hagoort, P., Fernandez, G., Ingvar, M., & Petersson, K. M. (2006). Neural correlates of artificial syntactic structure classification. NeuroImage, 32(2), 956-967. doi:10.1016/j.neuroimage.2006.03.057.

    Abstract

    The human brain supports acquisition mechanisms that extract structural regularities implicitly from experience without the induction of an explicit model. It has been argued that the capacity to generalize to new input is based on the acquisition of abstract representations, which reflect underlying structural regularities in the input ensemble. In this study, we explored the outcome of this acquisition mechanism, and to this end, we investigated the neural correlates of artificial syntactic classification using event-related functional magnetic resonance imaging. The participants engaged once a day during an 8-day period in a short-term memory acquisition task in which consonant-strings generated from an artificial grammar were presented in a sequential fashion without performance feedback. They performed reliably above chance on the grammaticality classification tasks on days 1 and 8 which correlated with a corticostriatal processing network, including frontal, cingulate, inferior parietal, and middle occipital/occipitotemporal regions as well as the caudate nucleus. Part of the left inferior frontal region (BA 45) was specifically related to syntactic violations and showed no sensitivity to local substring familiarity. In addition, the head of the caudate nucleus correlated positively with syntactic correctness on day 8 but not day 1, suggesting that this region contributes to an increase in cognitive processing fluency.
  • Jones, S., Nyberg, L., Sandblom, J., Stigsdotter Neely, A., Ingvar, M., Petersson, K. M., & Bäckman, L. (2006). Cognitive and neural plasticity in aging: General and task-specific limitations. Neuroscience and Biobehavioral Reviews, 30(6), 864-871. doi:10.1016/j.neubiorev.2006.06.012.

    Abstract

    There is evidence for cognitive as well as neural plasticity across the adult life span, although aging is associated with certain constraints on plasticity. In the current paper, we argue that the age-related reduction in cognitive plasticity may be due to (a) deficits in general processing resources, and (b) failure to engage in task-relevant cognitive operations. Memory-training research suggests that age-related processing deficits (e.g., executive functions, speed) hinder older adults from utilizing mnemonic techniques as efficiently as the young, and that this age difference is reflected by diminished frontal activity during mnemonic use. Additional constraints on memory plasticity in old age are related to difficulties that are specific to the task, such as creating visual images, as well as in binding together the information to be remembered. These deficiencies are paralleled by reduced activity in occipito-parietal and medial–temporal regions, respectively. Future attempts to optimize intervention-related gains in old age should consider targeting both general processing and task-specific origins of age-associated reductions in cognitive plasticity.
  • Lind, J., Persson, J., Ingvar, M., Larsson, A., Cruts, M., Van Broeckhoven, C., Adolfsson, R., Bäckman, L., Nilsson, L.-G., Petersson, K. M., & Nyberg, L. (2006). Reduced functional brain activity response in cognitively intact apolipoprotein E ε4 carriers. Brain, 129(5), 1240-1248. doi:10.1093/brain/awl054.

    Abstract

    The apolipoprotein E {varepsilon}4 (APOE {varepsilon}4) is the main known genetic risk factor for Alzheimer's disease. Genetic assessments in combination with other diagnostic tools, such as neuroimaging, have the potential to facilitate early diagnosis. In this large-scale functional MRI (fMRI) study, we have contrasted 30 APOE {varepsilon}4 carriers (age range: 49–74 years; 19 females), of which 10 were homozygous for the {varepsilon}4 allele, and 30 non-carriers with regard to brain activity during a semantic categorization task. Test groups were closely matched for sex, age and education. Critically, both groups were cognitively intact and thus symptom-free of Alzheimer's disease. APOE {varepsilon}4 carriers showed reduced task-related responses in the left inferior parietal cortex, and bilaterally in the anterior cingulate region. A dose-related response was observed in the parietal area such that diminution was most pronounced in homozygous compared with heterozygous carriers. In addition, contrasts of processing novel versus familiar items revealed an abnormal response in the right hippocampus in the APOE {varepsilon}4 group, mainly expressed as diminished sensitivity to the relative novelty of stimuli. Collectively, these findings indicate that genetic risk translates into reduced functional brain activity, in regions pertinent to Alzheimer's disease, well before alterations can be detected at the behavioural level.
  • Petersson, K. M., & Reis, A. (2006). Characteristics of illiterate and literate cognitive processing: Implications of brain- behavior co-constructivism. In P. B. Baltes, P. Reuter-Lorenz, & F. Rösler (Eds.), Lifespan development and the brain: The perspective of biocultural co-constructivism (pp. 279-305). Cambridge: Cambridge University Press.

    Abstract

    Literacy and education represent essential aspects of contemporary society and subserve important aspects of socialization and cultural transmission. The study of illiterate subjects represents one approach to investigate the interactions between neurobiological and cultural factors in cognitive development, individual learning, and their influence on the functional organization of the brain. In this chapter we review some recent cognitive, neuroanatomic, and functional neuroimaging results indicating that formal education influences important aspects of the human brain. Taken together this provides strong support for the idea that the brain is modulated by literacy and formal education, which in turn change the brains capacity to interact with its environment, including the individual's contemporary culture. In other words, the individual is able to participate in, interact with, and actively contribute to the process of cultural transmission in new ways through acquired cognitive skills.
  • Petersson, K. M., Gisselgard, J., Gretzer, M., & Ingvar, M. (2006). Interaction between a verbal working memory network and the medial temporal lobe. NeuroImage, 33(4), 1207-1217. doi:10.1016/j.neuroimage.2006.07.042.

    Abstract

    The irrelevant speech effect illustrates that sounds that are irrelevant to a visually presented short-term memory task still interfere with neuronal function. In the present study we explore the functional and effective connectivity of such interference. The functional connectivity analysis suggested an interaction between the level of irrelevant speech and the correlation between in particular the left superior temporal region, associated with verbal working memory, and the left medial temporal lobe. Based on this psycho-physiological interaction, and to broaden the understanding of this result, we performed a network analysis, using a simple network model for verbal working memory, to analyze its interaction with the medial temporal lobe memory system. The results showed dissociations in terms of network interactions between frontal as well as parietal and temporal areas in relation to the medial temporal lobe. The results of the present study suggest that a transition from phonological loop processing towards an engagement of episodic processing might take place during the processing of interfering irrelevant sounds. We speculate that, in response to the irrelevant sounds, this reflects a dynamic shift in processing as suggested by a closer interaction between a verbal working memory system and the medial temporal lobe memory system.
  • Piekema, C., Kessels, R. P. C., Mars, R. B., Petersson, K. M., & Fernández, G. (2006). The right hippocampus participates in short-term memory maintenance of object–location associations. NeuroImage, 33(1), 374-382. doi:10.1016/j.neuroimage.2006.06.035.

    Abstract

    Doubts have been cast on the strict dissociation between short- and long-term memory systems. Specifically, several neuroimaging studies have shown that the medial temporal lobe, a region almost invariably associated with long-term memory, is involved in active short-term memory maintenance. Furthermore, a recent study in hippocampally lesioned patients has shown that the hippocampus is critically involved in associating objects and their locations, even when the delay period lasts only 8 s. However, the critical feature that causes the medial temporal lobe, and in particular the hippocampus, to participate in active maintenance is still unknown. This study was designed in order to explore hippocampal involvement in active maintenance of spatial and non-spatial associations. Eighteen participants performed a delayed-match-to-sample task in which they had to maintain either object–location associations, color–number association, single colors, or single locations. Whole-brain activity was measured using event-related functional magnetic resonance imaging and analyzed using a random effects model. Right lateralized hippocampal activity was evident when participants had to maintain object–location associations, but not when they had to maintain object–color associations or single items. The present results suggest a hippocampal involvement in active maintenance when feature combinations that include spatial information have to be maintained online.
  • Reis, A., Faísca, L., Ingvar, M., & Petersson, K. M. (2006). Color makes a difference: Two-dimensional object naming in literate and illiterate subjects. Brain and Cognition, 60, 49-54. doi:10.1016/j.bandc.2005.09.012.

    Abstract

    Previous work has shown that illiterate subjects are better at naming two-dimensional representations of real objects when presented as colored photos as compared to black and white drawings. This raises the question if color or textural details selectively improve object recognition and naming in illiterate compared to literate subjects. In this study, we investigated whether the surface texture and/or color of objects is used to access stored object knowledge in illiterate subjects. A group of illiterate subjects and a matched literate control group were compared on an immediate object naming task with four conditions: color and black and white (i.e., grey-scaled) photos, as well as color and black and white (i.e., grey-scaled) drawings of common everyday objects. The results show that illiterate subjects perform significantly better when the stimuli are colored and this effect is independent of the photographic detail. In addition, there were significant differences between the literacy groups in the black and white condition for both drawings and photos. These results suggest that color object information contributes to object recognition. This effect was particularly prominent in the illiterate group
  • Takashima, A., Petersson, K. M., Rutters, F., Tendolkar, I., Jensen, O., Zwarts, M. J., McNaughton, B. L., & Fernández, G. (2006). Declarative memory consolidation in humans: A prospective functional magnetic resonance imaging study. Proceedings of the National Academy of Sciences of the United States of America [PNAS], 103(3), 756-761.

    Abstract

    Retrieval of recently acquired declarative memories depends on
    the hippocampus, but with time, retrieval is increasingly sustainable
    by neocortical representations alone. This process has been
    conceptualized as system-level consolidation. Using functional
    magnetic resonance imaging, we assessed over the course of three
    months how consolidation affects the neural correlates of memory
    retrieval. The duration of slow-wave sleep during a nap/rest
    period after the initial study session and before the first scan
    session on day 1 correlated positively with recognition memory
    performance for items studied before the nap and negatively with
    hippocampal activity associated with correct confident recognition.
    Over the course of the entire study, hippocampal activity for
    correct confident recognition continued to decrease, whereas activity
    in a ventral medial prefrontal region increased. These findings,
    together with data obtained in rodents, may prompt a
    revision of classical consolidation theory, incorporating a transfer
    of putative linking nodes from hippocampal to prelimbic prefrontal
    areas.
  • Gisselgard, J., Petersson, K. M., Baddeley, A., & Ingvar, M. (2003). The irrelevant speech effect: A PET study. Neuropsychologia, 41, 1899-1911. doi:10.1016/S0028-3932(03)00122-2.

    Abstract

    Positron emission tomography (PET) was performed in normal volunteers during a serial recall task under the influence of irrelevant speech comprising both single item repetition and multi-item sequences. An interaction approach was used to identify brain areas specifically related to the irrelevant speech effect. We interpreted activations as compensatory recruitment of complementary working memory processing, and decreased activity in terms of suppression of task relevant areas invoked by the irrelevant speech. The interaction between the distractors and working memory revealed a significant effect in the left, and to a lesser extent in the right, superior temporal region, indicating that initial phonological processing was relatively suppressed. Additional areas of decreased activity were observed in an a priori defined cortical network related to verbalworking memory, incorporating the bilateral superior temporal and inferior/middle frontal corticesn extending into Broca’s area on the left. We also observed a weak activation in the left inferior parietal cortex, a region suggested to reflect the phonological store, the subcomponent where the interference is assumed to take place. The results suggest that the irrelevant speech effect is correlated with and thus tentatively may be explained in terms of a suppression of components of the verbal working memory network as outlined. The results can be interpreted in terms of inhibitory top–down attentional mechanisms attenuating the influence of the irrelevant speech, although additional studies are clearly necessary to more fully characterize the nature of this phenomenon and its theoretical implications for existing short-term memory models
  • Lundstrom, B. N., Petersson, K. M., Andersson, J., Johansson, M., Fransson, P., & Ingvar, M. (2003). Isolating the retrieval of imagined pictures during episodic memory: Activation of the left precuneus and left prefrontal cortex. Neuroimage, 20, 1934-1943. doi:10.1016/j.neuroimage.2003.07.017.

    Abstract

    The posterior medial parietal cortex and the left prefrontal cortex have both been implicated in the recollection of past episodes. In order to clarify their functional significance, we performed this functional magnetic resonance imaging study, which employed event-related source memory and item recognition retrieval of words paired with corresponding imagined or viewed pictures. Our results suggest that episodic source memory is related to a functional network including the posterior precuneus and the left lateral prefrontal cortex. This network is activated during explicit retrieval of imagined pictures and results from the retrieval of item-context associations. This suggests that previously imagined pictures provide a context with which encoded words can be more strongly associated.
  • Nyberg, L., Marklund, P., Persson, J., Cabeza, R., Forkstam, C., Petersson, K. M., & Ingvar, M. (2003). Common prefrontal activations during working memory, episodic memory, and semantic memory. Neuropsychologia, 41(3), 371-377. doi:10.1016/S0028-3932(02)00168-9.

    Abstract

    Regions of the prefrontal cortex (PFC) are typically activated in many different cognitive functions. In most studies, the focus has been on the role of specific PFC regions in specific cognitive domains, but more recently similarities in PFC activations across cognitive domains have been stressed. Such similarities may suggest that a region mediates a common function across a variety of cognitive tasks. In this study, we compared the activation patterns associated with tests of working memory, semantic memory and episodic memory. The results converged on a general involvement of four regions across memory tests. These were located in left frontopolar cortex, left mid-ventrolateral PFC, left mid-dorsolateral PFC and dorsal anterior cingulate cortex. These findings provide evidence that some PFC regions are engaged during many different memory tests. The findings are discussed in relation to theories about the functional contribition of the PFC regions and the architecture of memory.
  • Nyberg, L., Sandblom, J., Jones, S., Stigsdotter Neely, A., Petersson, K. M., Ingvar, M., & Bäckman, L. (2003). Neural correlates of training-related memory improvement in adulthood and aging. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13728-13733. doi:10.1073/pnas.1735487100.

    Abstract

    Cognitive studies show that both younger and older adults can increase their memory performance after training in using a visuospatial mnemonic, although age-related memory deficits tend to be magnified rather than reduced after training. Little is known about the changes in functional brain activity that accompany training-induced memory enhancement, and whether age-related activity changes are associated with the size of training-related gains. Here, we demonstrate that younger adults show increased activity during memory encoding in occipito-parietal and frontal brain regions after learning the mnemonic. Older adults did not show increased frontal activity, and only those elderly persons who benefited from the mnemonic showed increased occipitoparietal activity. These findings suggest that age-related differences in cognitive reserve capacity may reflect both a frontal processing deficiency and a posterior production deficiency.
  • Petersson, K. M., Sandblom, J., Elfgren, C., & Ingvar, M. (2003). Instruction-specific brain activations during episodic encoding: A generalized level of processing effect. Neuroimage, 20, 1795-1810. doi:10.1016/S1053-8119(03)00414-2.

    Abstract

    In a within-subject design we investigated the levels-of-processing (LOP) effect using visual material in a behavioral and a corresponding PET study. In the behavioral study we characterize a generalized LOP effect, using pleasantness and graphical quality judgments in the encoding situation, with two types of visual material, figurative and nonfigurative line drawings. In the PET study we investigate the related pattern of brain activations along these two dimensions. The behavioral results indicate that instruction and material contribute independently to the level of recognition performance. Therefore the LOP effect appears to stem both from the relative relevance of the stimuli (encoding opportunity) and an altered processing of stimuli brought about by the explicit instruction (encoding mode). In the PET study, encoding of visual material under the pleasantness (deep) instruction yielded left lateralized frontoparietal and anterior temporal activations while surface-based perceptually oriented processing (shallow instruction) yielded right lateralized frontoparietal, posterior temporal, and occipitotemporal activations. The result that deep encoding was related to the left prefrontal cortex while shallow encoding was related to the right prefrontal cortex, holding the material constant, is not consistent with the HERA model. In addition, we suggest that the anterior medial superior frontal region is related to aspects of self-referential semantic processing and that the inferior parts of the anterior cingulate as well as the medial orbitofrontal cortex is related to affective processing, in this case pleasantness evaluation of the stimuli regardless of explicit semantic content. Finally, the left medial temporal lobe appears more actively engaged by elaborate meaning-based processing and the complex response pattern observed in different subregions of the MTL lends support to the suggestion that this region is functionally segregated.
  • Reis, A., Guerreiro, M., & Petersson, K. M. (2003). A sociodemographic and neuropsychological characterization of an illiterate population. Applied Neuropsychology, 10, 191-204. doi:10.1207/s15324826an1004_1.

    Abstract

    The objectives of this article are to characterize the performance and to discuss the performance differences between literate and illiterate participants in a well-defined study population.We describe the participant-selection procedure used to investigate this population. Three groups with similar sociocultural backgrounds living in a relatively homogeneous fishing community in southern Portugal were characterized in terms of socioeconomic and sociocultural background variables and compared on a simple neuropsychological test battery; specifically, a literate group with more than 4 years of education (n = 9), a literate group with 4 years of education (n = 26), and an illiterate group (n = 31) were included in this study.We compare and discuss our results with other similar studies on the effects of literacy and illiteracy. The results indicate that naming and identification of real objects, verbal fluency using ecologically relevant semantic criteria, verbal memory, and orientation are not affected by literacy or level of formal education. In contrast, verbal working memory assessed with digit span, verbal abstraction, long-term semantic memory, and calculation (i.e., multiplication) are significantly affected by the level of literacy. We indicate that it is possible, with proper participant-selection procedures, to exclude general cognitive impairment and to control important sociocultural factors that potentially could introduce bias when studying the specific effects of literacy and level of formal education on cognitive brain function.
  • Reis, A., & Petersson, K. M. (2003). Educational level, socioeconomic status and aphasia research: A comment on Connor et al. (2001)- Effect of socioeconomic status on aphasia severity and recovery. Brain and Language, 87, 449-452. doi:10.1016/S0093-934X(03)00140-8.

    Abstract

    Is there a relation between socioeconomic factors and aphasia severity and recovery? Connor, Obler, Tocco, Fitzpatrick, and Albert (2001) describe correlations between the educational level and socioeconomic status of aphasic subjects with aphasia severity and subsequent recovery. As stated in the introduction by Connor et al. (2001), studies of the influence of educational level and literacy (or illiteracy) on aphasia severity have yielded conflicting results, while no significant link between socioeconomic status and aphasia severity and recovery has been established. In this brief note, we will comment on their findings and conclusions, beginning first with a brief review of literacy and aphasia research, and complexities encountered in these fields of investigation. This serves as a general background to our specific comments on Connor et al. (2001), which will be focusing on methodological issues and the importance of taking normative values in consideration when subjects with different socio-cultural or socio-economic backgrounds are assessed.
  • Fransson, P., Merboldt, K.-D., Ingvar, M., Petersson, K. M., & Frahm, J. (2001). Functional MRI with reduced susceptibility artifact: High-resolution mapping of episodic memory encoding. Neuroreport, 12, 1415-1420.

    Abstract

    Visual episodic memory encoding was investigated using echoplanar magnetic resonance imaging at 2.0 x 2.0 mm2 resolution and 1.0 mm section thickness, which allows for functional mapping of hippocampal, parahippocampal, and ventral occipital regions with reduced magnetic susceptibility artifact. The memory task was based on 54 image pairs each consisting of a complex visual scene and the face of one of six different photographers. A second group of subjects viewed the same set of images without memory instruction as well as a reversing checkerboard. Apart from visual activation in occipital cortical areas, episodic memory encoding revealed consistent activation in the parahippocampal gyrus but not in the hippocampus proper. This ®nding was most prominently evidenced in sagittal maps covering the right hippocampal formation. Mean activated volumes were 432±293 µl and 259±179 µl for intentional memory encoding and non-instructed viewing, respectively. In contrast, the checkerboard paradigm elicited pure visual activation without parahippocampal involvement.
  • Ledberg, A., Fransson, P., Larsson, J., & Petersson, K. M. (2001). A 4D approach to the analysis of functional brain images: Application to fMRI data. Human Brain Mapping, 13, 185-198. doi:10.1002/hbm.1032.

    Abstract

    This paper presents a new approach to functional magnetic resonance imaging (FMRI) data analysis. The main difference lies in the view of what comprises an observation. Here we treat the data from one scanning session (comprising t volumes, say) as one observation. This is contrary to the conventional way of looking at the data where each session is treated as t different observations. Thus instead of viewing the v voxels comprising the 3D volume of the brain as the variables, we suggest the usage of the vt hypervoxels comprising the 4D volume of the brain-over-session as the variables. A linear model is fitted to the 4D volumes originating from different sessions. Parameter estimation and hypothesis testing in this model can be performed with standard techniques. The hypothesis testing generates 4D statistical images (SIs) to which any relevant test statistic can be applied. In this paper we describe two test statistics, one voxel based and one cluster based, that can be used to test a range of hypotheses. There are several benefits in treating the data from each session as one observation, two of which are: (i) the temporal characteristics of the signal can be investigated without an explicit model for the blood oxygenation level dependent (BOLD) contrast response function, and (ii) the observations (sessions) can be assumed to be independent and hence inference on the 4D SI can be made by nonparametric or Monte Carlo methods. The suggested 4D approach is applied to FMRI data and is shown to accurately detect the expected signal
  • Nyberg, L., Petersson, K. M., Nilsson, L.-G., Sandblom, J., Åberg, C., & Ingvar, M. (2001). Reactivation of motor brain areas during explicit memory for actions. Neuroimage, 14, 521-528. doi:10.1006/nimg.2001.0801.

    Abstract

    Recent functional brain imaging studies have shown that sensory-specific brain regions that are activated during perception/encoding of sensory-specific information are reactivated during memory retrieval of the same information. Here we used PET to examine whether verbal retrieval of action phrases is associated with reactivation of motor brain regions if the actions were overtly or covertly performed during encoding. Compared to a verbal condition, encoding by means of overt as well as covert activity was associated with differential activity in regions in contralateral somatosensory and motor cortex. Several of these regions were reactivated during retrieval. Common to both the overt and covert conditions was reactivation of regions in left ventral motor cortex and left inferior parietal cortex. A direct comparison of the overt and covert activity conditions showed that activation and reactivation of left dorsal parietal cortex and right cerebellum was specific to the overt condition. These results support the reactivation hypothesis by showing that verbal-explicit memory of actions involves areas that are engaged during overt and covert motor activity.
  • Petersson, K. M., Reis, A., & Ingvar, M. (2001). Cognitive processing in literate and illiterate subjects: A review of some recent behavioral and functional neuroimaging data. Scandinavian Journal of Psychology, 42, 251-267. doi:10.1111/1467-9450.00235.

    Abstract

    The study of illiterate subjects, which for specific socio-cultural reasons did not have the opportunity to acquire basic reading and writing skills, represents one approach to study the interaction between neurobiological and cultural factors in cognitive development and the functional organization of the human brain. In addition the naturally occurring illiteracy may serve as a model for studying the influence of alphabetic orthography on auditory-verbal language. In this paper we have reviewed some recent behavioral and functional neuroimaging data indicating that learning an alphabetic written language modulates the auditory-verbal language system in a non-trivial way and provided support for the hypothesis that the functional architecture of the brain is modulated by literacy. We have also indicated that the effects of literacy and formal schooling is not limited to language related skills but appears to affect also other cognitive domains. In particular, we indicate that formal schooling influences 2D but not 3D visual naming skills. We have also pointed to the importance of using ecologically relevant tasks when comparing literate and illiterate subjects. We also demonstrate the applicability of a network approach in elucidating differences in the functional organization of the brain between groups. The strength of such an approach is the ability to study patterns of interactions between functionally specialized brain regions and the possibility to compare such patterns of brain interactions between groups or functional states. This complements the more commonly used activation approach to functional neuroimaging data, which characterize functionally specialized regions, and provides important data characterizing the functional interactions between these regions.
  • Petersson, K. M., Sandblom, J., Gisselgard, J., & Ingvar, M. (2001). Learning related modulation of functional retrieval networks in man. Scandinavian Journal of Psychology, 42, 197-216. doi:10.1111/1467-9450.00231.
  • Reis, A., Petersson, K. M., Castro-Caldas, A., & Ingvar, M. (2001). Formal schooling influences two- but not three-dimensional naming skills. Brain and Cognition, 47, 397-411. doi:doi:10.1006/brcg.2001.1316.

    Abstract

    The modulatory influence of literacy on the cognitive system of the human brain has been indicated in behavioral, neuroanatomic, and functional neuroimaging studies. In this study we explored the functional consequences of formal education and the acquisition of an alphabetic written language on two- and three-dimensional visual naming. The results show that illiterate subjects perform significantly worse on immediate naming of two-dimensional representations of common everyday objects compared to literate subjects, both in terms of accuracy and reaction times. In contrast, there was no significant difference when the subjects named the corresponding real objects. The results suggest that formal education and learning to read and to write modulate the cognitive process involved in processing two- but not three-dimensional representations of common everyday objects. Both the results of the reaction time and the error pattern analyses can be interpreted as indicating that the major influence of literacy affects the visual system or the interaction between the visual and the language systems. We suggest that the visual system in a wide sense and/or the interface between the visual and the language system are differently formatted in literate and illiterate subjects. In other words, we hypothesize that the pattern of interactions in the functional–anatomical networks subserving visual naming, that is, the interactions within and between the visual and language processing networks, differ in literate and illiterate subjects
  • Sandberg, A., Lansner, A., & Petersson, K. M. (2001). Selective enhancement of recall through plasticity modulation in an autoassociative memory. Neurocomputing, 38(40), 867-873. doi:10.1016/S0925-2312(01)00363-0.

    Abstract

    The strength of a memory trace is modulated by a variety of factors such as arousal, attention, context, type of processing during encoding, salience and novelty of the experience. Some of these factors can be modeled as a variable plasticity level in the memory system, controlled by arousal or relevance-estimating systems. We demonstrate that a Bayesian confidence propagation neural network with learning time constant modulated in this way exhibits enhanced recall of an item tagged as salient. Proactive and retroactive inhibition of other items is also demonstrated as well as an inverted U-shape response to overall plasticity

Share this page