Displaying 1 - 30 of 30
-
Araújo, S., Faísca, L., Bramão, I., Petersson, K. M., & Reis, A. (2014). Lexical and phonological processes in dyslexic readers: Evidences from a visual lexical decision task. Dyslexia, 20, 38-53. doi:10.1002/dys.1461.
Abstract
The aim of the present study was to investigate whether reading failure in the context of an orthography of intermediate consistency is linked to inefficient use of the lexical orthographic reading procedure. The performance of typically developing and dyslexic Portuguese-speaking children was examined in a lexical decision task, where the stimulus lexicality, word frequency and length were manipulated. Both lexicality and length effects were larger in the dyslexic group than in controls, although the interaction between group and frequency disappeared when the data were transformed to control for general performance factors. Children with dyslexia were influenced in lexical decision making by the stimulus length of words and pseudowords, whereas age-matched controls were influenced by the length of pseudowords only. These findings suggest that non-impaired readers rely mainly on lexical orthographic information, but children with dyslexia preferentially use the phonological decoding procedure—albeit poorly—most likely because they struggle to process orthographic inputs as a whole such as controls do. Accordingly, dyslexic children showed significantly poorer performance than controls for all types of stimuli, including words that could be considered over-learned, such as high-frequency words. This suggests that their orthographic lexical entries are less established in the orthographic lexicon -
Basnakova, J., Weber, K., Petersson, K. M., Van Berkum, J. J. A., & Hagoort, P. (2014). Beyond the language given: The neural correlates of inferring speaker meaning. Cerebral Cortex, 24(10), 2572-2578. doi:10.1093/cercor/bht112.
Abstract
Even though language allows us to say exactly what we mean, we often use language to say things indirectly, in a way that depends on the specific communicative context. For example, we can use an apparently straightforward sentence like "It is hard to give a good presentation" to convey deeper meanings, like "Your talk was a mess!" One of the big puzzles in language science is how listeners work out what speakers really mean, which is a skill absolutely central to communication. However, most neuroimaging studies of language comprehension have focused on the arguably much simpler, context-independent process of understanding direct utterances. To examine the neural systems involved in getting at contextually constrained indirect meaning, we used functional magnetic resonance imaging as people listened to indirect replies in spoken dialog. Relative to direct control utterances, indirect replies engaged dorsomedial prefrontal cortex, right temporo-parietal junction and insula, as well as bilateral inferior frontal gyrus and right medial temporal gyrus. This suggests that listeners take the speaker's perspective on both cognitive (theory of mind) and affective (empathy-like) levels. In line with classic pragmatic theories, our results also indicate that currently popular "simulationist" accounts of language comprehension fail to explain how listeners understand the speaker's intended message.Additional information
http://cercor.oxfordjournals.org/content/early/2013/05/02/cercor.bht112/suppl/D… -
Folia, V., & Petersson, K. M. (2014). Implicit structured sequence learning: An fMRI study of the structural mere-exposure effect. Frontiers in Psychology, 5: 41. doi:10.3389/fpsyg.2014.00041.
Abstract
In this event-related FMRI study we investigated the effect of five days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL) paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the FMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45) and the medial prefrontal regions (centered on BA 8/32). Importantly, and central to this study, the inclusion of a naive preference FMRI baseline measurement allowed us to conclude that these FMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax) in unsupervised AGL paradigms with proper learning designs. -
Pacheco, A., Araújo, S., Faísca, L., de Castro, S. L., Petersson, K. M., & Reis, A. (2014). Dyslexia's heterogeneity: Cognitive profiling of Portuguese children with dyslexia. Reading and Writing, 27(9), 1529-1545. doi:10.1007/s11145-014-9504-5.
Abstract
Recent studies have emphasized that developmental dyslexia is a multiple-deficit disorder, in contrast to the traditional single-deficit view. In this context, cognitive profiling of children with dyslexia may be a relevant contribution to this unresolved discussion. The aim of this study was to profile 36 Portuguese children with dyslexia from the 2nd to 5th grade. Hierarchical cluster analysis was used to group participants according to their phonological awareness, rapid automatized naming, verbal short-term memory, vocabulary, and nonverbal intelligence abilities. The results suggested a two-cluster solution: a group with poorer performance on phoneme deletion and rapid automatized naming compared with the remaining variables (Cluster 1) and a group characterized by underperforming on the variables most related to phonological processing (phoneme deletion and digit span), but not on rapid automatized naming (Cluster 2). Overall, the results seem more consistent with a hybrid perspective, such as that proposed by Pennington and colleagues (2012), for understanding the heterogeneity of dyslexia. The importance of characterizing the profiles of individuals with dyslexia becomes clear within the context of constructing remediation programs that are specifically targeted and are more effective in terms of intervention outcome.Additional information
11145_2014_9504_MOESM1_ESM.doc -
Silva, S., Branco, P., Barbosa, F., Marques-Teixeira, J., Petersson, K. M., & Castro, S. L. (2014). Musical phrase boundaries, wrap-up and the closure positive shift. Brain Research, 1585, 99-107. doi:10.1016/j.brainres.2014.08.025.
Abstract
We investigated global integration (wrap-up) processes at the boundaries of musical phrases by comparing the effects of well and non-well formed phrases on event-related potentials time-locked to two boundary points: the onset and the offset of the boundary pause. The Closure Positive Shift, which is elicited at the boundary offset, was not modulated by the quality of phrase structure (well vs. non-well formed). In contrast, the boundary onset potentials showed different patterns for well and non-well formed phrases. Our results contribute to specify the functional meaning of the Closure Positive Shift in music, shed light on the large-scale structural integration of musical input, and raise new hypotheses concerning shared resources between music and language. -
Silva, S., Barbosa, F., Marques-Teixeira, J., Petersson, K. M., & Castro, S. L. (2014). You know when: Event-related potentials and theta/beat power indicate boundary prediction in music. Journal of Integrative Neuroscience, 13(1), 19-34. doi:10.1142/S0219635214500022.
Abstract
Neuroscientific and musicological approaches to music cognition indicate that listeners familiarized in the Western tonal tradition expect a musical phrase boundary at predictable time intervals. However, phrase boundary prediction processes in music remain untested. We analyzed event-related potentials (ERPs) and event-related induced power changes at the onset and offset of a boundary pause. We made comparisons with modified melodies, where the pause was omitted and filled by tones. The offset of the pause elicited a closure positive shift (CPS), indexing phrase boundary detection. The onset of the filling tones elicited significant increases in theta and beta powers. In addition, the P2 component was larger when the filling tones started than when they ended. The responses to boundary omission suggest that listeners expected to hear a boundary pause. Therefore, boundary prediction seems to coexist with boundary detection in music segmentation. -
Van Leeuwen, T. M., Petersson, K. M., Langner, O., Rijpkema, M., & Hagoort, P. (2014). Color specificity in the human V4 complex: An fMRI repetition suppression study. In T. D. Papageorgiou, G. I. Cristopoulous, & S. M. Smirnakis (
Eds. ), Advanced Brain Neuroimaging Topics in Health and Disease - Methods and Applications (pp. 275-295). Rijeka, Croatia: Intech. doi:10.5772/58278. -
Van Leeuwen, T. M., Lamers, M. J. A., Petersson, K. M., Gussenhoven, C., Poser, B., & Hagoort, P. (2014). Phonological markers of information structure: An fMRI study. Neuropsychologia, 58(1), 64-74. doi:10.1016/j.neuropsychologia.2014.03.017.
Abstract
In this fMRI study we investigate the neural correlates of information structure integration during sentence comprehension in Dutch. We looked into how prosodic cues (pitch accents) that signal the information status of constituents to the listener (new information) are combined with other types of information during the unification process. The difficulty of unifying the prosodic cues into overall sentence meaning was manipulated by constructing sentences in which the pitch accent did (focus-accent agreement), and sentences in which the pitch accent did not (focus-accent disagreement) match the expectations for focus constituents of the sentence. In case of a mismatch, the load on unification processes increases. Our results show two anatomically distinct effects of focus-accent disagreement, one located in the posterior left inferior frontal gyrus (LIFG, BA6/44), and one in the more anterior-ventral LIFG (BA 47/45). Our results confirm that information structure is taken into account during unification, and imply an important role for the LIFG in unification processes, in line with previous fMRI studies.Additional information
mmc1.doc -
Araújo, S., Faísca, L., Petersson, K. M., & Reis, A. (2009). Cognitive profiles in Portuguese children with dyslexia. In Abstracts presented at the International Neuropsychological Society, Finnish Neuropsychological Society, Joint Mid-Year Meeting July 29-August 1, 2009. Helsinki, Finland & Tallinn, Estonia (pp. 23). Retrieved from http://www.neuropsykologia.fi/ins2009/INS_MY09_Abstract.pdf.
-
Araújo, S., Faísca, L., Petersson, K. M., & Reis, A. (2009). Visual processing factors contribute to object naming difficulties in dyslexic readers. In Abstracts presented at the International Neuropsychological Society, Finnish Neuropsychological Society, Joint Mid-Year Meeting July 29-August 1, 2009. Helsinki, Finland & Tallinn, Estonia (pp. 39). Retrieved from http://www.neuropsykologia.fi/ins2009/INS_MY09_Abstract.pdf.
-
Bramão, I., Faísca, L., Forkstam, C., Inácio, K., Petersson, K. M., & Reis, A. (2009). Interaction between perceptual color and color knowledge information in object recognition: Behavioral and electrophysiological evidence. In Abstracts presented at the International Neuropsychological Society, Finnish Neuropsychological Society, Joint Mid-Year Meeting July 29-August 1, 2009. Helsinki, Finland & Tallinn, Estonia (pp. 39). Retrieved from http://www.neuropsykologia.fi/ins2009/INS_MY09_Abstract.pdf.
-
Cavaco, P., Curuklu, B., & Petersson, K. M. (2009). Artificial grammar recognition using two spiking neural networks. Frontiers in Neuroinformatics. Conference abstracts: 2nd INCF Congress of Neuroinformatics. doi:10.3389/conf.neuro.11.2009.08.096.
Abstract
In this paper we explore the feasibility of artificial (formal) grammar recognition (AGR) using spiking neural networks. A biologically inspired minicolumn architecture is designed as the basic computational unit. A network topography is defined based on the minicolumn architecture, here referred to as nodes, connected with excitatory and inhibitory connections. Nodes in the network represent unique internal states of the grammar’s finite state machine (FSM). Future work to improve the performance of the networks is discussed. The modeling framework developed can be used by neurophysiological research to implement network layouts and compare simulated performance characteristics to actual subject performance. -
Folia, V., Forkstam, C., Hagoort, P., & Petersson, K. M. (2009). Language comprehension: The interplay between form and content. In N. Taatgen, & H. van Rijn (
Eds. ), Proceedings of the 31th Annual Conference of the Cognitive Science Society (pp. 1686-1691). Austin, TX: Cognitive Science Society.Abstract
In a 2x2 event-related FMRI study we find support for the idea that the inferior frontal cortex, centered on Broca’s region and its homologue, is involved in constructive unification operations during the structure-building process in parsing for comprehension. Tentatively, we provide evidence for a role of the dorsolateral prefrontal cortex centered on BA 9/46 in the control component of the language system. Finally, the left temporo-parietal cortex, in the vicinity of Wernicke’s region, supports the interaction between the syntax of gender agreement and sentence-level semantics. -
Forkstam, C., Jansson, A., Ingvar, M., & Petersson, K. M. (2009). Modality transfer of acquired structural regularities: A preference for an acoustic route. In N. Taatgen, & H. Van Rijn (
Eds. ), Proceedings of the 31th Annual Conference of the Cognitive Science Society. Austin, TX: Cognitive Science Society.Abstract
Human implicit learning can be investigated with implicit artificial grammar learning, a simple model for aspects of natural language acquisition. In this paper we investigate the remaining effect of modality transfer in syntactic classification of an acquired grammatical sequence structure after implicit grammar acquisition. Participants practiced either on acoustically presented syllable sequences or visually presented consonant letter sequences. During classification we independently manipulated the statistical frequency-based and rule-based characteristics of the classification stimuli. Participants performed reliably above chance on the within modality classification task although more so for those working on syllable sequence acquisition. These subjects were also the only group that kept a significant performance level in transfer classification. We speculate that this finding is of particular relevance in consideration of an ecological validity in the input signal in the use of artificial grammar learning and in language learning paradigms at large. -
Menenti, L., Petersson, K. M., Scheeringa, R., & Hagoort, P. (2009). When elephants fly: Differential sensitivity of right and left inferior frontal gyri to discourse and world knowledge. Journal of Cognitive Neuroscience, 21, 2358-2368. doi:10.1162/jocn.2008.21163.
Abstract
Both local discourse and world knowledge are known to influence sentence processing. We investigated how these two sources of information conspire in language comprehension. Two types of critical sentences, correct and world knowledge anomalies, were preceded by either a neutral or a local context. The latter made the world knowledge anomalies more acceptable or plausible. We predicted that the effect of world knowledge anomalies would be weaker for the local context. World knowledge effects have previously been observed in the left inferior frontal region (Brodmann's area 45/47). In the current study, an effect of world knowledge was present in this region in the neutral context. We also observed an effect in the right inferior frontal gyrus, which was more sensitive to the discourse manipulation than the left inferior frontal gyrus. In addition, the left angular gyrus reacted strongly to the degree of discourse coherence between the context and critical sentence. Overall, both world knowledge and the discourse context affect the process of meaning unification, but do so by recruiting partly different sets of brain areas. -
Pacheco, A., Araújo, S., Faísca, L., Petersson, K. M., & Reis, A. (2009). Profiling dislexic children: Phonology and visual naming skills. In Abstracts presented at the International Neuropsychological Society, Finnish Neuropsychological Society, Joint Mid-Year Meeting July 29-August 1, 2009. Helsinki, Finland & Tallinn, Estonia (pp. 40). Retrieved from http://www.neuropsykologia.fi/ins2009/INS_MY09_Abstract.pdf.
-
Petersson, K. M., Ingvar, M., & Reis, A. (2009). Language and literacy from a cognitive neuroscience perspective. In D. Olsen, & N. Torrance (
Eds. ), Cambridge handbook of literacy (pp. 152-181). Cambridge: Cambridge University Press. -
Qin, S., Rijpkema, M., Tendolkar, I., Piekema, C., Hermans, E. J., Binder, M., Petersson, K. M., Luo, J., & Fernández, G. (2009). Dissecting medial temporal lobe contributions to item and associative memory formation. NeuroImage, 46, 874-881. doi:10.1016/j.neuroimage.2009.02.039.
Abstract
A fundamental and intensively discussed question is whether medial temporal lobe (MTL) processes that lead to non-associative item memories differ in their anatomical substrate from processes underlying associative memory formation. Using event-related functional magnetic resonance imaging, we implemented a novel design to dissociate brain activity related to item and associative memory formation not only by subsequent memory performance and anatomy but also in time, because the two constituents of each pair to be memorized were presented sequentially with an intra-pair delay of several seconds. Furthermore, the design enabled us to reduce potential differences in memory strength between item and associative memory by increasing task difficulty in the item recognition memory test. Confidence ratings for correct item recognition for both constituents did not differ between trials in which only item memory was correct and trials in which item and associative memory were correct. Specific subsequent memory analyses for item and associative memory formation revealed brain activity that appears selectively related to item memory formation in the posterior inferior temporal, posterior parahippocampal, and perirhinal cortices. In contrast, hippocampal and inferior prefrontal activity predicted successful retrieval of newly formed inter-item associations. Our findings therefore suggest that different MTL subregions indeed play distinct roles in the formation of item memory and inter-item associative memory as expected by several dual process models of the MTL memory system. -
Scheeringa, R., Petersson, K. M., Oostenveld, R., Norris, D. G., Hagoort, P., & Bastiaansen, M. C. M. (2009). Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance. Neuroimage, 44, 1224-1238. doi:10.1016/j.neuroimage.2008.08.041.
Abstract
PET and fMRI experiments have previously shown that several brain regions in the frontal and parietal lobe are involved in working memory maintenance. MEG and EEG experiments have shown parametric increases with load for oscillatory activity in posterior alpha and frontal theta power. In the current study we investigated whether the areas found with fMRI can be associated with these alpha and theta effects by measuring simultaneous EEG and fMRI during a modified Sternberg task This allowed us to correlate EEG at the single trial level with the fMRI BOLD signal by forming a regressor based on single trial alpha and theta
power estimates. We observed a right posterior, parametric alpha power increase, which was functionally related to decreases in BOLD in the primary visual cortex and in the posterior part of the right middle temporal gyrus. We relate this finding to the inhibition of neuronal activity that may interfere with WM maintenance. An observed parametric increase in frontal theta power was correlated to a decrease in BOLD in
regions that together form the default mode network. We did not observe correlations between oscillatory EEG phenomena and BOLD in the traditional WM areas. In conclusion, the study shows that simultaneous EEG fMRI recordings can be successfully used to identify the emergence of functional networks in the brain during the execution of a cognitive task. -
Snijders, T. M., Vosse, T., Kempen, G., Van Berkum, J. J. A., Petersson, K. M., & Hagoort, P. (2009). Retrieval and unification of syntactic structure in sentence comprehension: An fMRI study using word-category ambiguity. Cerebral Cortex, 19, 1493-1503. doi:10.1093/cercor/bhn187.
Abstract
Sentence comprehension requires the retrieval of single word information from long-term memory, and the integration of this information into multiword representations. The current functional magnetic resonance imaging study explored the hypothesis that the left posterior temporal gyrus supports the retrieval of lexical-syntactic information, whereas left inferior frontal gyrus (LIFG) contributes to syntactic unification. Twenty-eight subjects read sentences and word sequences containing word-category (noun–verb) ambiguous words at critical positions. Regions contributing to the syntactic unification process should show enhanced activation for sentences compared to words, and only within sentences display a larger signal for ambiguous than unambiguous conditions. The posterior LIFG showed exactly this predicted pattern, confirming our hypothesis that LIFG contributes to syntactic unification. The left posterior middle temporal gyrus was activated more for ambiguous than unambiguous conditions (main effect over both sentences and word sequences), as predicted for regions subserving the retrieval of lexical-syntactic information from memory. We conclude that understanding language involves the dynamic interplay between left inferior frontal and left posterior temporal regions. -
Tesink, C. M. J. Y., Buitelaar, J. K., Petersson, K. M., Van der Gaag, R. J., Kan, C. C., Tendolkar, I., & Hagoort, P. (2009). Neural correlates of pragmatic language comprehension in autism disorders. Brain, 132, 1941-1952. doi:10.1093/brain/awp103.
Abstract
Difficulties with pragmatic aspects of communication are universal across individuals with autism spectrum disorders (ASDs). Here we focused on an aspect of pragmatic language comprehension that is relevant to social interaction in daily life: the integration of speaker characteristics inferred from the voice with the content of a message. Using functional magnetic resonance imaging (fMRI), we examined the neural correlates of the integration of voice-based inferences about the speaker’s age, gender or social background, and sentence content in adults with ASD and matched control participants. Relative to the control group, the ASD group showed increased activation in right inferior frontal gyrus (RIFG; Brodmann area 47) for speakerincongruent sentences compared to speaker-congruent sentences. Given that both groups performed behaviourally at a similar level on a debriefing interview outside the scanner, the increased activation in RIFG for the ASD group was interpreted as being compensatory in nature. It presumably reflects spill-over processing from the language dominant left hemisphere due to higher task demands faced by the participants with ASD when integrating speaker characteristics and the content of a spoken sentence. Furthermore, only the control group showed decreased activation for speaker-incongruent relative to speaker-congruent sentences in right ventral medial prefrontal cortex (vMPFC; Brodmann area 10), including right anterior cingulate cortex (ACC; Brodmann area 24/32). Since vMPFC is involved in self-referential processing related to judgments and inferences about self and others, the absence of such a modulation in vMPFC activation in the ASD group possibly points to atypical default self-referential mental activity in ASD. Our results show that in ASD compensatory mechanisms are necessary in implicit, low-level inferential processes in spoken language understanding. This indicates that pragmatic language problems in ASD are not restricted to high-level inferential processes, but encompass the most basic aspects of pragmatic language processing. -
Tesink, C. M. J. Y., Petersson, K. M., Van Berkum, J. J. A., Van den Brink, D., Buitelaar, J. K., & Hagoort, P. (2009). Unification of speaker and meaning in language comprehension: An fMRI study. Journal of Cognitive Neuroscience, 21, 2085-2099. doi:10.1162/jocn.2008.21161.
Abstract
When interpreting a message, a listener takes into account several sources of linguistic and extralinguistic information. Here we focused on one particular form of extralinguistic information, certain speaker characteristics as conveyed by the voice. Using functional magnetic resonance imaging, we examined the neural structures involved in the unification of sentence meaning and voice-based inferences about the speaker's age, sex, or social background. We found enhanced activation in the inferior frontal gyrus bilaterally (BA 45/47) during listening to sentences whose meaning was incongruent with inferred speaker characteristics. Furthermore, our results showed an overlap in brain regions involved in unification of speaker-related information and those used for the unification of semantic and world knowledge information [inferior frontal gyrus bilaterally (BA 45/47) and left middle temporal gyrus (BA 21)]. These findings provide evidence for a shared neural unification system for linguistic and extralinguistic sources of information and extend the existing knowledge about the role of inferior frontal cortex as a crucial component for unification during language comprehension. -
Uddén, J., Araújo, S., Forkstam, C., Ingvar, M., Hagoort, P., & Petersson, K. M. (2009). A matter of time: Implicit acquisition of recursive sequence structures. In N. Taatgen, & H. Van Rijn (
Eds. ), Proceedings of the Thirty-First Annual Conference of the Cognitive Science Society (pp. 2444-2449).Abstract
A dominant hypothesis in empirical research on the evolution of language is the following: the fundamental difference between animal and human communication systems is captured by the distinction between regular and more complex non-regular grammars. Studies reporting successful artificial grammar learning of nested recursive structures and imaging studies of the same have methodological shortcomings since they typically allow explicit problem solving strategies and this has been shown to account for the learning effect in subsequent behavioral studies. The present study overcomes these shortcomings by using subtle violations of agreement structure in a preference classification task. In contrast to the studies conducted so far, we use an implicit learning paradigm, allowing the time needed for both abstraction processes and consolidation to take place. Our results demonstrate robust implicit learning of recursively embedded structures (context-free grammar) and recursive structures with cross-dependencies (context-sensitive grammar) in an artificial grammar learning task spanning 9 days. Keywords: Implicit artificial grammar learning; centre embedded; cross-dependency; implicit learning; context-sensitive grammar; context-free grammar; regular grammar; non-regular grammar -
Fransson, P., Merboldt, K.-D., Ingvar, M., Petersson, K. M., & Frahm, J. (2001). Functional MRI with reduced susceptibility artifact: High-resolution mapping of episodic memory encoding. Neuroreport, 12, 1415-1420.
Abstract
Visual episodic memory encoding was investigated using echoplanar magnetic resonance imaging at 2.0 x 2.0 mm2 resolution and 1.0 mm section thickness, which allows for functional mapping of hippocampal, parahippocampal, and ventral occipital regions with reduced magnetic susceptibility artifact. The memory task was based on 54 image pairs each consisting of a complex visual scene and the face of one of six different photographers. A second group of subjects viewed the same set of images without memory instruction as well as a reversing checkerboard. Apart from visual activation in occipital cortical areas, episodic memory encoding revealed consistent activation in the parahippocampal gyrus but not in the hippocampus proper. This ®nding was most prominently evidenced in sagittal maps covering the right hippocampal formation. Mean activated volumes were 432±293 µl and 259±179 µl for intentional memory encoding and non-instructed viewing, respectively. In contrast, the checkerboard paradigm elicited pure visual activation without parahippocampal involvement. -
Ledberg, A., Fransson, P., Larsson, J., & Petersson, K. M. (2001). A 4D approach to the analysis of functional brain images: Application to fMRI data. Human Brain Mapping, 13, 185-198. doi:10.1002/hbm.1032.
Abstract
This paper presents a new approach to functional magnetic resonance imaging (FMRI) data analysis. The main difference lies in the view of what comprises an observation. Here we treat the data from one scanning session (comprising t volumes, say) as one observation. This is contrary to the conventional way of looking at the data where each session is treated as t different observations. Thus instead of viewing the v voxels comprising the 3D volume of the brain as the variables, we suggest the usage of the vt hypervoxels comprising the 4D volume of the brain-over-session as the variables. A linear model is fitted to the 4D volumes originating from different sessions. Parameter estimation and hypothesis testing in this model can be performed with standard techniques. The hypothesis testing generates 4D statistical images (SIs) to which any relevant test statistic can be applied. In this paper we describe two test statistics, one voxel based and one cluster based, that can be used to test a range of hypotheses. There are several benefits in treating the data from each session as one observation, two of which are: (i) the temporal characteristics of the signal can be investigated without an explicit model for the blood oxygenation level dependent (BOLD) contrast response function, and (ii) the observations (sessions) can be assumed to be independent and hence inference on the 4D SI can be made by nonparametric or Monte Carlo methods. The suggested 4D approach is applied to FMRI data and is shown to accurately detect the expected signal -
Nyberg, L., Petersson, K. M., Nilsson, L.-G., Sandblom, J., Åberg, C., & Ingvar, M. (2001). Reactivation of motor brain areas during explicit memory for actions. Neuroimage, 14, 521-528. doi:10.1006/nimg.2001.0801.
Abstract
Recent functional brain imaging studies have shown that sensory-specific brain regions that are activated during perception/encoding of sensory-specific information are reactivated during memory retrieval of the same information. Here we used PET to examine whether verbal retrieval of action phrases is associated with reactivation of motor brain regions if the actions were overtly or covertly performed during encoding. Compared to a verbal condition, encoding by means of overt as well as covert activity was associated with differential activity in regions in contralateral somatosensory and motor cortex. Several of these regions were reactivated during retrieval. Common to both the overt and covert conditions was reactivation of regions in left ventral motor cortex and left inferior parietal cortex. A direct comparison of the overt and covert activity conditions showed that activation and reactivation of left dorsal parietal cortex and right cerebellum was specific to the overt condition. These results support the reactivation hypothesis by showing that verbal-explicit memory of actions involves areas that are engaged during overt and covert motor activity. -
Petersson, K. M., Reis, A., & Ingvar, M. (2001). Cognitive processing in literate and illiterate subjects: A review of some recent behavioral and functional neuroimaging data. Scandinavian Journal of Psychology, 42, 251-267. doi:10.1111/1467-9450.00235.
Abstract
The study of illiterate subjects, which for specific socio-cultural reasons did not have the opportunity to acquire basic reading and writing skills, represents one approach to study the interaction between neurobiological and cultural factors in cognitive development and the functional organization of the human brain. In addition the naturally occurring illiteracy may serve as a model for studying the influence of alphabetic orthography on auditory-verbal language. In this paper we have reviewed some recent behavioral and functional neuroimaging data indicating that learning an alphabetic written language modulates the auditory-verbal language system in a non-trivial way and provided support for the hypothesis that the functional architecture of the brain is modulated by literacy. We have also indicated that the effects of literacy and formal schooling is not limited to language related skills but appears to affect also other cognitive domains. In particular, we indicate that formal schooling influences 2D but not 3D visual naming skills. We have also pointed to the importance of using ecologically relevant tasks when comparing literate and illiterate subjects. We also demonstrate the applicability of a network approach in elucidating differences in the functional organization of the brain between groups. The strength of such an approach is the ability to study patterns of interactions between functionally specialized brain regions and the possibility to compare such patterns of brain interactions between groups or functional states. This complements the more commonly used activation approach to functional neuroimaging data, which characterize functionally specialized regions, and provides important data characterizing the functional interactions between these regions. -
Petersson, K. M., Sandblom, J., Gisselgard, J., & Ingvar, M. (2001). Learning related modulation of functional retrieval networks in man. Scandinavian Journal of Psychology, 42, 197-216. doi:10.1111/1467-9450.00231.
-
Reis, A., Petersson, K. M., Castro-Caldas, A., & Ingvar, M. (2001). Formal schooling influences two- but not three-dimensional naming skills. Brain and Cognition, 47, 397-411. doi:doi:10.1006/brcg.2001.1316.
Abstract
The modulatory influence of literacy on the cognitive system of the human brain has been indicated in behavioral, neuroanatomic, and functional neuroimaging studies. In this study we explored the functional consequences of formal education and the acquisition of an alphabetic written language on two- and three-dimensional visual naming. The results show that illiterate subjects perform significantly worse on immediate naming of two-dimensional representations of common everyday objects compared to literate subjects, both in terms of accuracy and reaction times. In contrast, there was no significant difference when the subjects named the corresponding real objects. The results suggest that formal education and learning to read and to write modulate the cognitive process involved in processing two- but not three-dimensional representations of common everyday objects. Both the results of the reaction time and the error pattern analyses can be interpreted as indicating that the major influence of literacy affects the visual system or the interaction between the visual and the language systems. We suggest that the visual system in a wide sense and/or the interface between the visual and the language system are differently formatted in literate and illiterate subjects. In other words, we hypothesize that the pattern of interactions in the functional–anatomical networks subserving visual naming, that is, the interactions within and between the visual and language processing networks, differ in literate and illiterate subjects -
Sandberg, A., Lansner, A., & Petersson, K. M. (2001). Selective enhancement of recall through plasticity modulation in an autoassociative memory. Neurocomputing, 38(40), 867-873. doi:10.1016/S0925-2312(01)00363-0.
Abstract
The strength of a memory trace is modulated by a variety of factors such as arousal, attention, context, type of processing during encoding, salience and novelty of the experience. Some of these factors can be modeled as a variable plasticity level in the memory system, controlled by arousal or relevance-estimating systems. We demonstrate that a Bayesian confidence propagation neural network with learning time constant modulated in this way exhibits enhanced recall of an item tagged as salient. Proactive and retroactive inhibition of other items is also demonstrated as well as an inverted U-shape response to overall plasticity
Share this page