Publications

Displaying 1 - 26 of 26
  • Carlsson, K., Andersson, J., Petrovic, P., Petersson, K. M., Öhman, A., & Ingvar, M. (2006). Predictability modulates the affective and sensory-discriminative neural processing of pain. NeuroImage, 32(4), 1804-1814. doi:10.1016/j.neuroimage.2006.05.027.

    Abstract

    Knowing what is going to happen next, that is, the capacity to predict upcoming events, modulates the extent to which aversive stimuli induce stress and anxiety. We explored this issue by manipulating the temporal predictability of aversive events by means of a visual cue, which was either correlated or uncorrelated with pain stimuli (electric shocks). Subjects reported lower levels of anxiety, negative valence and pain intensity when shocks were predictable. In addition to attenuate focus on danger, predictability allows for correct temporal estimation of, and selective attention to, the sensory input. With functional magnetic resonance imaging, we found that predictability was related to enhanced activity in relevant sensory-discriminative processing areas, such as the primary and secondary sensory cortex and posterior insula. In contrast, the unpredictable more aversive context was correlated to brain activity in the anterior insula and the orbitofrontal cortex, areas associated with affective pain processing. This context also prompted increased activity in the posterior parietal cortex and lateral prefrontal cortex that we attribute to enhanced alertness and sustained attention during unpredictability.
  • Forkstam, C., Hagoort, P., Fernandez, G., Ingvar, M., & Petersson, K. M. (2006). Neural correlates of artificial syntactic structure classification. NeuroImage, 32(2), 956-967. doi:10.1016/j.neuroimage.2006.03.057.

    Abstract

    The human brain supports acquisition mechanisms that extract structural regularities implicitly from experience without the induction of an explicit model. It has been argued that the capacity to generalize to new input is based on the acquisition of abstract representations, which reflect underlying structural regularities in the input ensemble. In this study, we explored the outcome of this acquisition mechanism, and to this end, we investigated the neural correlates of artificial syntactic classification using event-related functional magnetic resonance imaging. The participants engaged once a day during an 8-day period in a short-term memory acquisition task in which consonant-strings generated from an artificial grammar were presented in a sequential fashion without performance feedback. They performed reliably above chance on the grammaticality classification tasks on days 1 and 8 which correlated with a corticostriatal processing network, including frontal, cingulate, inferior parietal, and middle occipital/occipitotemporal regions as well as the caudate nucleus. Part of the left inferior frontal region (BA 45) was specifically related to syntactic violations and showed no sensitivity to local substring familiarity. In addition, the head of the caudate nucleus correlated positively with syntactic correctness on day 8 but not day 1, suggesting that this region contributes to an increase in cognitive processing fluency.
  • Jones, S., Nyberg, L., Sandblom, J., Stigsdotter Neely, A., Ingvar, M., Petersson, K. M., & Bäckman, L. (2006). Cognitive and neural plasticity in aging: General and task-specific limitations. Neuroscience and Biobehavioral Reviews, 30(6), 864-871. doi:10.1016/j.neubiorev.2006.06.012.

    Abstract

    There is evidence for cognitive as well as neural plasticity across the adult life span, although aging is associated with certain constraints on plasticity. In the current paper, we argue that the age-related reduction in cognitive plasticity may be due to (a) deficits in general processing resources, and (b) failure to engage in task-relevant cognitive operations. Memory-training research suggests that age-related processing deficits (e.g., executive functions, speed) hinder older adults from utilizing mnemonic techniques as efficiently as the young, and that this age difference is reflected by diminished frontal activity during mnemonic use. Additional constraints on memory plasticity in old age are related to difficulties that are specific to the task, such as creating visual images, as well as in binding together the information to be remembered. These deficiencies are paralleled by reduced activity in occipito-parietal and medial–temporal regions, respectively. Future attempts to optimize intervention-related gains in old age should consider targeting both general processing and task-specific origins of age-associated reductions in cognitive plasticity.
  • Lind, J., Persson, J., Ingvar, M., Larsson, A., Cruts, M., Van Broeckhoven, C., Adolfsson, R., Bäckman, L., Nilsson, L.-G., Petersson, K. M., & Nyberg, L. (2006). Reduced functional brain activity response in cognitively intact apolipoprotein E ε4 carriers. Brain, 129(5), 1240-1248. doi:10.1093/brain/awl054.

    Abstract

    The apolipoprotein E {varepsilon}4 (APOE {varepsilon}4) is the main known genetic risk factor for Alzheimer's disease. Genetic assessments in combination with other diagnostic tools, such as neuroimaging, have the potential to facilitate early diagnosis. In this large-scale functional MRI (fMRI) study, we have contrasted 30 APOE {varepsilon}4 carriers (age range: 49–74 years; 19 females), of which 10 were homozygous for the {varepsilon}4 allele, and 30 non-carriers with regard to brain activity during a semantic categorization task. Test groups were closely matched for sex, age and education. Critically, both groups were cognitively intact and thus symptom-free of Alzheimer's disease. APOE {varepsilon}4 carriers showed reduced task-related responses in the left inferior parietal cortex, and bilaterally in the anterior cingulate region. A dose-related response was observed in the parietal area such that diminution was most pronounced in homozygous compared with heterozygous carriers. In addition, contrasts of processing novel versus familiar items revealed an abnormal response in the right hippocampus in the APOE {varepsilon}4 group, mainly expressed as diminished sensitivity to the relative novelty of stimuli. Collectively, these findings indicate that genetic risk translates into reduced functional brain activity, in regions pertinent to Alzheimer's disease, well before alterations can be detected at the behavioural level.
  • Petersson, K. M., & Reis, A. (2006). Characteristics of illiterate and literate cognitive processing: Implications of brain- behavior co-constructivism. In P. B. Baltes, P. Reuter-Lorenz, & F. Rösler (Eds.), Lifespan development and the brain: The perspective of biocultural co-constructivism (pp. 279-305). Cambridge: Cambridge University Press.

    Abstract

    Literacy and education represent essential aspects of contemporary society and subserve important aspects of socialization and cultural transmission. The study of illiterate subjects represents one approach to investigate the interactions between neurobiological and cultural factors in cognitive development, individual learning, and their influence on the functional organization of the brain. In this chapter we review some recent cognitive, neuroanatomic, and functional neuroimaging results indicating that formal education influences important aspects of the human brain. Taken together this provides strong support for the idea that the brain is modulated by literacy and formal education, which in turn change the brains capacity to interact with its environment, including the individual's contemporary culture. In other words, the individual is able to participate in, interact with, and actively contribute to the process of cultural transmission in new ways through acquired cognitive skills.
  • Petersson, K. M., Gisselgard, J., Gretzer, M., & Ingvar, M. (2006). Interaction between a verbal working memory network and the medial temporal lobe. NeuroImage, 33(4), 1207-1217. doi:10.1016/j.neuroimage.2006.07.042.

    Abstract

    The irrelevant speech effect illustrates that sounds that are irrelevant to a visually presented short-term memory task still interfere with neuronal function. In the present study we explore the functional and effective connectivity of such interference. The functional connectivity analysis suggested an interaction between the level of irrelevant speech and the correlation between in particular the left superior temporal region, associated with verbal working memory, and the left medial temporal lobe. Based on this psycho-physiological interaction, and to broaden the understanding of this result, we performed a network analysis, using a simple network model for verbal working memory, to analyze its interaction with the medial temporal lobe memory system. The results showed dissociations in terms of network interactions between frontal as well as parietal and temporal areas in relation to the medial temporal lobe. The results of the present study suggest that a transition from phonological loop processing towards an engagement of episodic processing might take place during the processing of interfering irrelevant sounds. We speculate that, in response to the irrelevant sounds, this reflects a dynamic shift in processing as suggested by a closer interaction between a verbal working memory system and the medial temporal lobe memory system.
  • Piekema, C., Kessels, R. P. C., Mars, R. B., Petersson, K. M., & Fernández, G. (2006). The right hippocampus participates in short-term memory maintenance of object–location associations. NeuroImage, 33(1), 374-382. doi:10.1016/j.neuroimage.2006.06.035.

    Abstract

    Doubts have been cast on the strict dissociation between short- and long-term memory systems. Specifically, several neuroimaging studies have shown that the medial temporal lobe, a region almost invariably associated with long-term memory, is involved in active short-term memory maintenance. Furthermore, a recent study in hippocampally lesioned patients has shown that the hippocampus is critically involved in associating objects and their locations, even when the delay period lasts only 8 s. However, the critical feature that causes the medial temporal lobe, and in particular the hippocampus, to participate in active maintenance is still unknown. This study was designed in order to explore hippocampal involvement in active maintenance of spatial and non-spatial associations. Eighteen participants performed a delayed-match-to-sample task in which they had to maintain either object–location associations, color–number association, single colors, or single locations. Whole-brain activity was measured using event-related functional magnetic resonance imaging and analyzed using a random effects model. Right lateralized hippocampal activity was evident when participants had to maintain object–location associations, but not when they had to maintain object–color associations or single items. The present results suggest a hippocampal involvement in active maintenance when feature combinations that include spatial information have to be maintained online.
  • Reis, A., Faísca, L., Ingvar, M., & Petersson, K. M. (2006). Color makes a difference: Two-dimensional object naming in literate and illiterate subjects. Brain and Cognition, 60, 49-54. doi:10.1016/j.bandc.2005.09.012.

    Abstract

    Previous work has shown that illiterate subjects are better at naming two-dimensional representations of real objects when presented as colored photos as compared to black and white drawings. This raises the question if color or textural details selectively improve object recognition and naming in illiterate compared to literate subjects. In this study, we investigated whether the surface texture and/or color of objects is used to access stored object knowledge in illiterate subjects. A group of illiterate subjects and a matched literate control group were compared on an immediate object naming task with four conditions: color and black and white (i.e., grey-scaled) photos, as well as color and black and white (i.e., grey-scaled) drawings of common everyday objects. The results show that illiterate subjects perform significantly better when the stimuli are colored and this effect is independent of the photographic detail. In addition, there were significant differences between the literacy groups in the black and white condition for both drawings and photos. These results suggest that color object information contributes to object recognition. This effect was particularly prominent in the illiterate group
  • Takashima, A., Petersson, K. M., Rutters, F., Tendolkar, I., Jensen, O., Zwarts, M. J., McNaughton, B. L., & Fernández, G. (2006). Declarative memory consolidation in humans: A prospective functional magnetic resonance imaging study. Proceedings of the National Academy of Sciences of the United States of America [PNAS], 103(3), 756-761.

    Abstract

    Retrieval of recently acquired declarative memories depends on
    the hippocampus, but with time, retrieval is increasingly sustainable
    by neocortical representations alone. This process has been
    conceptualized as system-level consolidation. Using functional
    magnetic resonance imaging, we assessed over the course of three
    months how consolidation affects the neural correlates of memory
    retrieval. The duration of slow-wave sleep during a nap/rest
    period after the initial study session and before the first scan
    session on day 1 correlated positively with recognition memory
    performance for items studied before the nap and negatively with
    hippocampal activity associated with correct confident recognition.
    Over the course of the entire study, hippocampal activity for
    correct confident recognition continued to decrease, whereas activity
    in a ventral medial prefrontal region increased. These findings,
    together with data obtained in rodents, may prompt a
    revision of classical consolidation theory, incorporating a transfer
    of putative linking nodes from hippocampal to prelimbic prefrontal
    areas.
  • Carlsson, K., Petersson, K. M., Lundqvist, D., Karlsson, A., Ingvar, M., & Öhman, A. (2004). Fear and the amygdala: manipulation of awareness generates differential cerebral responses to phobic and fear-relevant (but nonfeared) stimuli. Emotion, 4(4), 340-353. doi:10.1037/1528-3542.4.4.340.

    Abstract

    Rapid response to danger holds an evolutionary advantage. In this positron emission tomography study, phobics were exposed to masked visual stimuli with timings that either allowed awareness or not of either phobic, fear-relevant (e.g., spiders to snake phobics), or neutral images. When the timing did not permit awareness, the amygdala responded to both phobic and fear-relevant stimuli. With time for more elaborate processing, phobic stimuli resulted in an addition of an affective processing network to the amygdala activity, whereas no activity was found in response to fear-relevant stimuli. Also, right prefrontal areas appeared deactivated, comparing aware phobic and fear-relevant conditions. Thus, a shift from top-down control to an affectively driven system optimized for speed was observed in phobic relative to fear-relevant aware processing.
  • Gisselgard, J., Petersson, K. M., & Ingvar, M. (2004). The irrelevant speech effect and working memory load. NeuroImage, 22, 1107-1116. doi:10.1016/j.neuroimage.2004.02.031.

    Abstract

    Irrelevant speech impairs the immediate serial recall of visually presented material. Previously, we have shown that the irrelevant speech effect (ISE) was associated with a relative decrease of regional blood flow in cortical regions subserving the verbal working memory, in particular the superior temporal cortex. In this extension of the previous study, the working memory load was increased and an increased activity as a response to irrelevant speech was noted in the dorsolateral prefrontal cortex. We suggest that the two studies together provide some basic insights as to the nature of the irrelevant speech effect. Firstly, no area in the brain can be ascribed as the single locus of the irrelevant speech effect. Instead, the functional neuroanatomical substrate to the effect can be characterized in terms of changes in networks of functionally interrelated areas. Secondly, the areas that are sensitive to the irrelevant speech effect are also generically activated by the verbal working memory task itself. Finally, the impact of irrelevant speech and related brain activity depends on working memory load as indicated by the differences between the present and the previous study. From a brain perspective, the irrelevant speech effect may represent a complex phenomenon that is a composite of several underlying mechanisms, which depending on the working memory load, include top-down inhibition as well as recruitment of compensatory support and control processes. We suggest that, in the low-load condition, a selection process by an inhibitory top-down modulation is sufficient, whereas in the high-load condition, at or above working memory span, auxiliary adaptive cognitive resources are recruited as compensation
  • Gonzalez da Silva, C., Petersson, K. M., Faísca, L., Ingvar, M., & Reis, A. (2004). The effects of literacy and education on the quantitative and qualitative aspects of semantic verbal fluency. Journal of Clinical and Experimental Neuropsychology, 26(2), 266-277. doi:10.1076/jcen.26.2.266.28089.

    Abstract

    Semantic verbal fluency tasks are commonly used in neuropsychological assessment. Investigations of the influence of level of literacy have not yielded consistent results in the literature. This prompted us to investigate the ecological relevance of task specifics, in particular, the choice of semantic criteria used. Two groups of literate and illiterate subjects were compared on two verbal fluency tasks using different semantic criteria. The performance on a food criterion (supermarket fluency task), considered more ecologically relevant for the two literacy groups, and an animal criterion (animal fluency task) were compared. The data were analysed using both quantitative and qualitative measures. The quantitative analysis indicated that the two literacy groups performed equally well on the supermarket fluency task. In contrast, results differed significantly during the animal fluency task. The qualitative analyses indicated differences between groups related to the strategies used, especially with respect to the animal fluency task. The overall results suggest that there is not a substantial difference between literate and illiterate subjects related to the fundamental workings of semantic memory. However, there is indication that the content of semantic memory reflects differences in shared cultural background - in other words, formal education –, as indicated by the significant interaction between level of literacy and semantic criterion.
  • Hagoort, P., Hald, L. A., Bastiaansen, M. C. M., & Petersson, K. M. (2004). Integration of word meaning and world knowledge in language comprehension. Science, 304(5669), 438-441. doi:10.1126/science.1095455.

    Abstract

    Although the sentences that we hear or read have meaning, this does not necessarily mean that they are also true. Relatively little is known about the critical brain structures for, and the relative time course of, establishing the meaning and truth of linguistic expressions. We present electroencephalogram data that show the rapid parallel integration of both semantic and world
    knowledge during the interpretation of a sentence. Data from functional magnetic resonance imaging revealed that the left inferior prefrontal cortex is involved in the integration of both meaning and world knowledge. Finally, oscillatory brain responses indicate that the brain keeps a record of what makes a sentence hard to interpret.
  • Meulenbroek, O., Petersson, K. M., Voermans, N., Weber, B., & Fernández, G. (2004). Age differences in neural correlates of route encoding and route recognition. Neuroimage, 22, 1503-1514. doi:10.1016/j.neuroimage.2004.04.007.

    Abstract

    Spatial memory deficits are core features of aging-related changes in cognitive abilities. The neural correlates of these deficits are largely unknown. In the present study, we investigated the neural underpinnings of age-related differences in spatial memory by functional MRI using a navigational memory task with route encoding and route recognition conditions. We investigated 20 healthy young (18 - 29 years old) and 20 healthy old adults (53 - 78 years old) in a random effects analysis. Old subjects showed slightly poorer performance than young subjects. Compared to the control condition, route encoding and route recognition showed activation of the dorsal and ventral visual processing streams and the frontal eye fields in both groups of subjects. Compared to old adults, young subjects showed during route encoding stronger activations in the dorsal and the ventral visual processing stream (supramarginal gyrus and posterior fusiform/parahippocampal areas). In addition, young subjects showed weaker anterior parahippocampal activity during route recognition compared to the old group. In contrast, old compared to young subjects showed less suppressed activity in the left perisylvian region and the anterior cingulate cortex during route encoding. Our findings suggest that agerelated navigational memory deficits might be caused by less effective route encoding based on reduced posterior fusiform/parahippocampal and parietal functionality combined with diminished inhibition of perisylvian and anterior cingulate cortices correlated with less effective suppression of task-irrelevant information. In contrast, age differences in neural correlates of route recognition seem to be rather subtle. Old subjects might show a diminished familiarity signal during route recognition in the anterior parahippocampal region.
  • Petersson, K. M., Forkstam, C., & Ingvar, M. (2004). Artificial syntactic violations activate Broca’s region. Cognitive Science, 28(3), 383-407. doi:10.1207/s15516709cog2803_4.

    Abstract

    In the present study, using event-related functional magnetic resonance imaging, we investigated a group of participants on a grammaticality classification task after they had been exposed to well-formed consonant strings generated from an artificial regular grammar.We used an implicit acquisition paradigm in which the participants were exposed to positive examples. The objective of this studywas to investigate whether brain regions related to language processing overlap with the brain regions activated by the grammaticality classification task used in the present study. Recent meta-analyses of functional neuroimaging studies indicate that syntactic processing is related to the left inferior frontal gyrus (Brodmann's areas 44 and 45) or Broca's region. In the present study, we observed that artificial grammaticality violations activated Broca's region in all participants. This observation lends some support to the suggestions that artificial grammar learning represents a model for investigating aspects of language learning in infants.
  • Petersson, K. M. (2004). The human brain, language, and implicit learning. Impuls, Tidsskrift for psykologi (Norwegian Journal of Psychology), 58(3), 62-72.
  • Petrovic, P., Petersson, K. M., Hansson, P., & Ingvar, M. (2004). Brainstem involvement in the initial response to pain. NeuroImage, 22, 995-1005. doi:10.1016/j.neuroimage.2004.01.046.

    Abstract

    The autonomic responses to acute pain exposure usually habituate rapidly while the subjective ratings of pain remain high for more extended periods of time. Thus, systems involved in the autonomic response to painful stimulation, for example the hypothalamus and the brainstem, would be expected to attenuate the response to pain during prolonged stimulation. This suggestion is in line with the hypothesis that the brainstem is specifically involved in the initial response to pain. To probe this hypothesis, we performed a positron emission tomography (PET) study where we scanned subjects during the first and second minute of a prolonged tonic painful cold stimulation (cold pressor test) and nonpainful cold stimulation. Galvanic skin response (GSR) was recorded during the PET scanning as an index of autonomic sympathetic response. In the main effect of pain, we observed increased activity in the thalamus bilaterally, in the contralateral insula and in the contralateral anterior cingulate cortex but no significant increases in activity in the primary or secondary somatosensory cortex. The autonomic response (GSR) decreased with stimulus duration. Concomitant with the autonomic response, increased activity was observed in brainstem and hypothalamus areas during the initial vs. the late stimulation. This effect was significantly stronger for the painful than for the cold stimulation. Activity in the brainstem showed pain-specific covariation with areas involved in pain processing, indicating an interaction between the brainstem and cortical pain networks. The findings indicate that areas in the brainstem are involved in the initial response to noxious stimulation, which is also characterized by an increased sympathetic response.
  • Petrovic, P., Carlsson, K., Petersson, K. M., Hansson, P., & Ingvar, M. (2004). Context-dependent deactivation of the amygdala during pain. Journal of Cognitive Neuroscience, 16, 1289-1301.

    Abstract

    The amygdala has been implicated in fundamental functions for the survival of the organism, such as fear and pain. In accord with this, several studies have shown increased amygdala activity during fear conditioning and the processing of fear-relevant material in human subjects. In contrast, functional neuroimaging studies of pain have shown a decreased amygdala activity. It has previously been proposed that the observed deactivations of the amygdala in these studies indicate a cognitive strategy to adapt to a distressful but in the experimental setting unavoidable painful event. In this positron emission tomography study, we show that a simple contextual manipulation, immediately preceding a painful stimulation, that increases the anticipated duration of the painful event leads to a decrease in amygdala activity and modulates the autonomic response during the noxious stimulation. On a behavioral level, 7 of the 10 subjects reported that they used coping strategies more intensely in this context. We suggest that the altered activity in the amygdala may be part of a mechanism to attenuate pain-related stress responses in a context that is perceived as being more aversive. The study also showed an increased activity in the rostral part of anterior cingulate cortex in the same context in which the amygdala activity decreased, further supporting the idea that this part of the cingulate cortex is involved in the modulation of emotional and pain networks
  • Voermans, N. C., Petersson, K. M., Daudey, L., Weber, B., Van Spaendonck, K. P., Kremer, H. P. H., & Fernández, G. (2004). Interaction between the Human Hippocampus and the Caudate Nucleus during Route Recognition. Neuron, 43, 427-435. doi:10.1016/j.neuron.2004.07.009.

    Abstract

    Navigation through familiar environments can rely upon distinct neural representations that are related to different memory systems with either the hippo-campus or the caudate nucleus at their core. However,it is a fundamental question whether and how these systems interact during route recognition. To address this issue, we combined a functional neuroimaging approach with a naturally occurring, well-controlled humanmodel of caudate nucleus dysfunction (i.e., pre-clinical and early-stage Huntington’s disease). Our results reveal a noncompetitive interaction so that the hippocampus compensates for gradual caudate nucleus dysfunction with a gradual activity increase,maintaining normal behavior. Furthermore, we revealed an interaction between medial temporal and caudate activity in healthy subjects, which was adaptively modified in Huntington patients to allow compensatory hippocampal processing. Thus, the two memory systems contribute in a noncompetitive, co operative manner to route recognition, which enables Polthe hippocampus to compensate seamlessly for the functional degradation of the caudate nucleus
  • Fransson, P., Merboldt, K.-D., Petersson, K. M., Ingvar, M., & Frahm, J. (2002). On the effects of spatial filtering — A comparative fMRI study of episodic memory encoding at high and low resolution. NeuroImage, 16(4), 977-984. doi:10.1006/nimg.2002.1079.

    Abstract

    Theeffects of spatial filtering in functional magnetic resonance imaging were investigated by reevaluating the data of a previous study of episodic memory encoding at 2 × 2 × 4-mm3 resolution with use of a SPM99 analysis involving a Gaussian kernel of 8-mm full width at half maximum. In addition, a multisubject analysis of activated regions was performed by normalizing the functional images to an approximate Talairach brain atlas. In individual subjects, spatial filtering merged activations in anatomically separated brain regions. Moreover, small foci of activated pixels which originated from veins became blurred and hence indistinguishable from parenchymal responses. The multisubject analysis resulted in activation of the hippocampus proper, a finding which could not be confirmed by the activation maps obtained at high resolution. It is concluded that the validity of multisubject fMRI analyses can be considerably improved by first analyzing individual data sets at optimum resolution to assess the effects of spatial filtering and minimize the risk of signal contamination by macroscopically visible vessels.
  • Nyberg, L., Forkstam, C., Petersson, K. M., Cabeza, R., & Ingvar, M. (2002). Brain imaging of human memory systems: Between-systems similarities and within-system differences. Cognitive Brain Research, 13(2), 281-292. doi:10.1016/S0926-6410(02)00052-6.

    Abstract

    There is much evidence for the existence of multiple memory systems. However, it has been argued that tasks assumed to reflect different memory systems share basic processing components and are mediated by overlapping neural systems. Here we used multivariate analysis of PET-data to analyze similarities and differences in brain activity for multiple tests of working memory, semantic memory, and episodic memory. The results from two experiments revealed between-systems differences, but also between-systems similarities and within-system differences. Specifically, support was obtained for a task-general working-memory network that may underlie active maintenance. Premotor and parietal regions were salient components of this network. A common network was also identified for two episodic tasks, cued recall and recognition, but not for a test of autobiographical memory. This network involved regions in right inferior and polar frontal cortex, and lateral and medial parietal cortex. Several of these regions were also engaged during the working-memory tasks, indicating shared processing for episodic and working memory. Fact retrieval and synonym generation were associated with increased activity in left inferior frontal and middle temporal regions and right cerebellum. This network was also associated with the autobiographical task, but not with living/non-living classification, and may reflect elaborate retrieval of semantic information. Implications of the present results for the classification of memory tasks with respect to systems and/or processes are discussed.
  • Petersson, K. M. (2002). Brain physiology. In R. Behn, & C. Veranda (Eds.), Proceedings of The 4th Southern European School of the European Physical Society - Physics in Medicine (pp. 37-38). Montreux: ESF.
  • Petrovic, P., Kalso, E., Petersson, K. M., & Ingvar, M. (2002). Placebo and opioid analgesia - Imaging a shared neuronal network. Science, 295(5560), 1737-1740. doi:10.1126/science.1067176.

    Abstract

    It has been suggested that placebo analgesia involves both higher order cognitive networks and endogenous opioid systems. The rostral anterior cingulate cortex (rACC) and the brainstem are implicated in opioid analgesia, suggesting a similar role for these structures in placebo analgesia. Using positron emission tomography, we confirmed that both opioid and placebo analgesia are associated with increased activity in the rACC. We also observed a covariation between the activity in the rACC and the brainstem during both opioid and placebo analgesia, but not during the pain-only condition. These findings indicate a related neural mechanism in placebo and opioid analgesia.
  • Petrovic, P., Kalso, E., Petersson, K. M., & Ingvar, M. (2002). Placebo and opioid analgesia - Imaging a shared neuronal network. Science, 295(5560), 1737-1740. doi:10.1126/science.1067176.

    Abstract

    It has been suggested that placebo analgesia involves both higher order cognitive networks and endogenous opioid systems. The rostral anterior cingulate cortex (rACC) and the brainstem are implicated in opioid analgesia, suggesting a similar role for these structures in placebo analgesia. Using positron emission tomography, we confirmed that both opioid and placebo analgesia are associated with increased activity in the rACC. We also observed a covariation between the activity in the rACC and the brainstem during both opioid and placebo analgesia, but not during the pain-only condition. These findings indicate a related neural mechanism in placebo and opioid analgesia.
  • Petrovic, P., Petersson, K. M., Hansson, P., & Ingvar, M. (2002). A regression analysis study of the primary somatosensory cortex during pain. NeuroImage, 16(4), 1142-1150. doi:10.1006/nimg.2002.1069.

    Abstract

    Several functional imaging studies of pain, using a number of different experimental paradigms and a variety of reference states, have failed to detect activations in the somatosensory cortices, while other imaging studies of pain have reported significant activations in these regions. The role of the somatosensory areas in pain processing has therefore been debated. In the present study the left hand was immersed in painfully cold water (standard cold pressor test) and in nonpainfully cold water during 2 min, and PET-scans were obtained either during the first or the second minute of stimulation. We observed no significant increase of activity in the somatosensory regions when the painful conditions were directly compared with the control conditions. In order to better understand the role of the primary somatosensory cortex (S1) in pain processing we used a regression analysis to study the relation between a ROI (region of interest) in the somatotopic S1-area for the stimulated hand and other regions known to be involved in pain processing. We hypothesized that although no increased activity was observed in the S1 during pain, this region would change its covariation pattern during noxious input as compared to the control stimulation if it is involved in or affected by the processing of pain. In the nonpainful cold conditions widespread regions of the ipsilateral and contralateral somatosensory cortex showed a positive covariation with the activity in the S1-ROI. However, during the first and second minute of pain this regression was significantly attenuated. During the second minute of painful stimulation there was a significant positive covariation between the activity in the S1-ROI and the other regions that are known to be involved in pain processing. Importantly, this relation was significantly stronger for the insula and the orbitofrontal cortex bilaterally when compared to the nonpainful state. The results indicate that the S1-cortex may be engaged in or affected by the processing of pain although no differential activity is observed when pain is compared with the reference condition.
  • Sandberg, A., Lansner, A., Petersson, K. M., & Ekeberg, Ö. (2002). A Bayesian attractor network with incremental learning. Network: Computation in Neural Systems, 13(2), 179-194. doi:10.1088/0954-898X/13/2/302.

    Abstract

    A realtime online learning system with capacity limits needs to gradually forget old information in order to avoid catastrophic forgetting. This can be achieved by allowing new information to overwrite old, as in a so-called palimpsest memory. This paper describes an incremental learning rule based on the Bayesian confidence propagation neural network that has palimpsest properties when employed in an attractor neural network. The network does not suffer from catastrophic forgetting, has a capacity dependent on the learning time constant and exhibits faster convergence for newer patterns.

Share this page