Publications

Displaying 1 - 12 of 12
  • Zhu, Z., Bastiaansen, M. C. M., Hakun, J. G., Petersson, K. M., Wang, S., & Hagoort, P. (2019). Semantic unification modulates N400 and BOLD signal change in the brain: A simultaneous EEG-fMRI study. Journal of Neurolinguistics, 52: 100855. doi:10.1016/j.jneuroling.2019.100855.

    Abstract

    Semantic unification during sentence comprehension has been associated with amplitude change of the N400 in event-related potential (ERP) studies, and activation in the left inferior frontal gyrus (IFG) in functional magnetic resonance imaging (fMRI) studies. However, the specificity of this activation to semantic unification remains unknown. To more closely examine the brain processes involved in semantic unification, we employed simultaneous EEG-fMRI to time-lock the semantic unification related N400 change, and integrated trial-by-trial variation in both N400 and BOLD change beyond the condition-level BOLD change difference measured in traditional fMRI analyses. Participants read sentences in which semantic unification load was parametrically manipulated by varying cloze probability. Separately, ERP and fMRI results replicated previous findings, in that semantic unification load parametrically modulated the amplitude of N400 and cortical activation. Integrated EEG-fMRI analyses revealed a different pattern in which functional activity in the left IFG and bilateral supramarginal gyrus (SMG) was associated with N400 amplitude, with the left IFG activation and bilateral SMG activation being selective to the condition-level and trial-level of semantic unification load, respectively. By employing the EEG-fMRI integrated analyses, this study among the first sheds light on how to integrate trial-level variation in language comprehension.
  • Duarte, R., Uhlmann, M., Van den Broek, D., Fitz, H., Petersson, K. M., & Morrison, A. (2018). Encoding symbolic sequences with spiking neural reservoirs. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN). doi:10.1109/IJCNN.2018.8489114.

    Abstract

    Biologically inspired spiking networks are an important tool to study the nature of computation and cognition in neural systems. In this work, we investigate the representational capacity of spiking networks engaged in an identity mapping task. We compare two schemes for encoding symbolic input, one in which input is injected as a direct current and one where input is delivered as a spatio-temporal spike pattern. We test the ability of networks to discriminate their input as a function of the number of distinct input symbols. We also compare performance using either membrane potentials or filtered spike trains as state variable. Furthermore, we investigate how the circuit behavior depends on the balance between excitation and inhibition, and the degree of synchrony and regularity in its internal dynamics. Finally, we compare different linear methods of decoding population activity onto desired target labels. Overall, our results suggest that even this simple mapping task is strongly influenced by design choices on input encoding, state-variables, circuit characteristics and decoding methods, and these factors can interact in complex ways. This work highlights the importance of constraining computational network models of behavior by available neurobiological evidence.
  • Huettig, F., Lachmann, T., Reis, A., & Petersson, K. M. (2018). Distinguishing cause from effect - Many deficits associated with developmental dyslexia may be a consequence of reduced and suboptimal reading experience. Language, Cognition and Neuroscience, 33(3), 333-350. doi:10.1080/23273798.2017.1348528.

    Abstract

    The cause of developmental dyslexia is still unknown despite decades of intense research. Many causal explanations have been proposed, based on the range of impairments displayed by affected individuals. Here we draw attention to the fact that many of these impairments are also shown by illiterate individuals who have not received any or very little reading instruction. We suggest that this fact may not be coincidental and that the performance differences of both illiterates and individuals with dyslexia compared to literate controls are, to a substantial extent, secondary consequences of either reduced or suboptimal reading experience or a combination of both. The search for the primary causes of reading impairments will make progress if the consequences of quantitative and qualitative differences in reading experience are better taken into account and not mistaken for the causes of reading disorders. We close by providing four recommendations for future research.
  • Inacio, F., Faisca, L., Forkstam, C., Araujo, S., Bramao, I., Reis, A., & Petersson, K. M. (2018). Implicit sequence learning is preserved in dyslexic children. Annals of Dyslexia, 68(1), 1-14. doi:10.1007/s11881-018-0158-x.

    Abstract

    This study investigates the implicit sequence learning abilities of dyslexic children using an artificial grammar learning task with an extended exposure period. Twenty children with developmental dyslexia participated in the study and were matched with two control groups—one matched for age and other for reading skills. During 3 days, all participants performed an acquisition task, where they were exposed to colored geometrical forms sequences with an underlying grammatical structure. On the last day, after the acquisition task, participants were tested in a grammaticality classification task. Implicit sequence learning was present in dyslexic children, as well as in both control groups, and no differences between groups were observed. These results suggest that implicit learning deficits per se cannot explain the characteristic reading difficulties of the dyslexics.
  • Silva, S., Folia, V., Inácio, F., Castro, S. L., & Petersson, K. M. (2018). Modality effects in implicit artificial grammar learning: An EEG study. Brain Research, 1687, 50-59. doi:10.1016/j.brainres.2018.02.020.

    Abstract

    Recently, it has been proposed that sequence learning engages a combination of modality-specific operating networks and modality-independent computational principles. In the present study, we compared the behavioural and EEG outcomes of implicit artificial grammar learning in the visual vs. auditory modality. We controlled for the influence of surface characteristics of sequences (Associative Chunk Strength), thus focusing on the strictly structural aspects of sequence learning, and we adapted the paradigms to compensate for known frailties of the visual modality compared to audition (temporal presentation, fast presentation rate). The behavioural outcomes were similar across modalities. Favouring the idea of modality-specificity, ERPs in response to grammar violations differed in topography and latency (earlier and more anterior component in the visual modality), and ERPs in response to surface features emerged only in the auditory modality. In favour of modality-independence, we observed three common functional properties in the late ERPs of the two grammars: both were free of interactions between structural and surface influences, both were more extended in a grammaticality classification test than in a preference classification test, and both correlated positively and strongly with theta event-related-synchronization during baseline testing. Our findings support the idea of modality-specificity combined with modality-independence, and suggest that memory for visual vs. auditory sequences may largely contribute to cross-modal differences.
  • Gisselgard, J., Petersson, K. M., Baddeley, A., & Ingvar, M. (2003). The irrelevant speech effect: A PET study. Neuropsychologia, 41, 1899-1911. doi:10.1016/S0028-3932(03)00122-2.

    Abstract

    Positron emission tomography (PET) was performed in normal volunteers during a serial recall task under the influence of irrelevant speech comprising both single item repetition and multi-item sequences. An interaction approach was used to identify brain areas specifically related to the irrelevant speech effect. We interpreted activations as compensatory recruitment of complementary working memory processing, and decreased activity in terms of suppression of task relevant areas invoked by the irrelevant speech. The interaction between the distractors and working memory revealed a significant effect in the left, and to a lesser extent in the right, superior temporal region, indicating that initial phonological processing was relatively suppressed. Additional areas of decreased activity were observed in an a priori defined cortical network related to verbalworking memory, incorporating the bilateral superior temporal and inferior/middle frontal corticesn extending into Broca’s area on the left. We also observed a weak activation in the left inferior parietal cortex, a region suggested to reflect the phonological store, the subcomponent where the interference is assumed to take place. The results suggest that the irrelevant speech effect is correlated with and thus tentatively may be explained in terms of a suppression of components of the verbal working memory network as outlined. The results can be interpreted in terms of inhibitory top–down attentional mechanisms attenuating the influence of the irrelevant speech, although additional studies are clearly necessary to more fully characterize the nature of this phenomenon and its theoretical implications for existing short-term memory models
  • Lundstrom, B. N., Petersson, K. M., Andersson, J., Johansson, M., Fransson, P., & Ingvar, M. (2003). Isolating the retrieval of imagined pictures during episodic memory: Activation of the left precuneus and left prefrontal cortex. Neuroimage, 20, 1934-1943. doi:10.1016/j.neuroimage.2003.07.017.

    Abstract

    The posterior medial parietal cortex and the left prefrontal cortex have both been implicated in the recollection of past episodes. In order to clarify their functional significance, we performed this functional magnetic resonance imaging study, which employed event-related source memory and item recognition retrieval of words paired with corresponding imagined or viewed pictures. Our results suggest that episodic source memory is related to a functional network including the posterior precuneus and the left lateral prefrontal cortex. This network is activated during explicit retrieval of imagined pictures and results from the retrieval of item-context associations. This suggests that previously imagined pictures provide a context with which encoded words can be more strongly associated.
  • Nyberg, L., Marklund, P., Persson, J., Cabeza, R., Forkstam, C., Petersson, K. M., & Ingvar, M. (2003). Common prefrontal activations during working memory, episodic memory, and semantic memory. Neuropsychologia, 41(3), 371-377. doi:10.1016/S0028-3932(02)00168-9.

    Abstract

    Regions of the prefrontal cortex (PFC) are typically activated in many different cognitive functions. In most studies, the focus has been on the role of specific PFC regions in specific cognitive domains, but more recently similarities in PFC activations across cognitive domains have been stressed. Such similarities may suggest that a region mediates a common function across a variety of cognitive tasks. In this study, we compared the activation patterns associated with tests of working memory, semantic memory and episodic memory. The results converged on a general involvement of four regions across memory tests. These were located in left frontopolar cortex, left mid-ventrolateral PFC, left mid-dorsolateral PFC and dorsal anterior cingulate cortex. These findings provide evidence that some PFC regions are engaged during many different memory tests. The findings are discussed in relation to theories about the functional contribition of the PFC regions and the architecture of memory.
  • Nyberg, L., Sandblom, J., Jones, S., Stigsdotter Neely, A., Petersson, K. M., Ingvar, M., & Bäckman, L. (2003). Neural correlates of training-related memory improvement in adulthood and aging. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13728-13733. doi:10.1073/pnas.1735487100.

    Abstract

    Cognitive studies show that both younger and older adults can increase their memory performance after training in using a visuospatial mnemonic, although age-related memory deficits tend to be magnified rather than reduced after training. Little is known about the changes in functional brain activity that accompany training-induced memory enhancement, and whether age-related activity changes are associated with the size of training-related gains. Here, we demonstrate that younger adults show increased activity during memory encoding in occipito-parietal and frontal brain regions after learning the mnemonic. Older adults did not show increased frontal activity, and only those elderly persons who benefited from the mnemonic showed increased occipitoparietal activity. These findings suggest that age-related differences in cognitive reserve capacity may reflect both a frontal processing deficiency and a posterior production deficiency.
  • Petersson, K. M., Sandblom, J., Elfgren, C., & Ingvar, M. (2003). Instruction-specific brain activations during episodic encoding: A generalized level of processing effect. Neuroimage, 20, 1795-1810. doi:10.1016/S1053-8119(03)00414-2.

    Abstract

    In a within-subject design we investigated the levels-of-processing (LOP) effect using visual material in a behavioral and a corresponding PET study. In the behavioral study we characterize a generalized LOP effect, using pleasantness and graphical quality judgments in the encoding situation, with two types of visual material, figurative and nonfigurative line drawings. In the PET study we investigate the related pattern of brain activations along these two dimensions. The behavioral results indicate that instruction and material contribute independently to the level of recognition performance. Therefore the LOP effect appears to stem both from the relative relevance of the stimuli (encoding opportunity) and an altered processing of stimuli brought about by the explicit instruction (encoding mode). In the PET study, encoding of visual material under the pleasantness (deep) instruction yielded left lateralized frontoparietal and anterior temporal activations while surface-based perceptually oriented processing (shallow instruction) yielded right lateralized frontoparietal, posterior temporal, and occipitotemporal activations. The result that deep encoding was related to the left prefrontal cortex while shallow encoding was related to the right prefrontal cortex, holding the material constant, is not consistent with the HERA model. In addition, we suggest that the anterior medial superior frontal region is related to aspects of self-referential semantic processing and that the inferior parts of the anterior cingulate as well as the medial orbitofrontal cortex is related to affective processing, in this case pleasantness evaluation of the stimuli regardless of explicit semantic content. Finally, the left medial temporal lobe appears more actively engaged by elaborate meaning-based processing and the complex response pattern observed in different subregions of the MTL lends support to the suggestion that this region is functionally segregated.
  • Reis, A., Guerreiro, M., & Petersson, K. M. (2003). A sociodemographic and neuropsychological characterization of an illiterate population. Applied Neuropsychology, 10, 191-204. doi:10.1207/s15324826an1004_1.

    Abstract

    The objectives of this article are to characterize the performance and to discuss the performance differences between literate and illiterate participants in a well-defined study population.We describe the participant-selection procedure used to investigate this population. Three groups with similar sociocultural backgrounds living in a relatively homogeneous fishing community in southern Portugal were characterized in terms of socioeconomic and sociocultural background variables and compared on a simple neuropsychological test battery; specifically, a literate group with more than 4 years of education (n = 9), a literate group with 4 years of education (n = 26), and an illiterate group (n = 31) were included in this study.We compare and discuss our results with other similar studies on the effects of literacy and illiteracy. The results indicate that naming and identification of real objects, verbal fluency using ecologically relevant semantic criteria, verbal memory, and orientation are not affected by literacy or level of formal education. In contrast, verbal working memory assessed with digit span, verbal abstraction, long-term semantic memory, and calculation (i.e., multiplication) are significantly affected by the level of literacy. We indicate that it is possible, with proper participant-selection procedures, to exclude general cognitive impairment and to control important sociocultural factors that potentially could introduce bias when studying the specific effects of literacy and level of formal education on cognitive brain function.
  • Reis, A., & Petersson, K. M. (2003). Educational level, socioeconomic status and aphasia research: A comment on Connor et al. (2001)- Effect of socioeconomic status on aphasia severity and recovery. Brain and Language, 87, 449-452. doi:10.1016/S0093-934X(03)00140-8.

    Abstract

    Is there a relation between socioeconomic factors and aphasia severity and recovery? Connor, Obler, Tocco, Fitzpatrick, and Albert (2001) describe correlations between the educational level and socioeconomic status of aphasic subjects with aphasia severity and subsequent recovery. As stated in the introduction by Connor et al. (2001), studies of the influence of educational level and literacy (or illiteracy) on aphasia severity have yielded conflicting results, while no significant link between socioeconomic status and aphasia severity and recovery has been established. In this brief note, we will comment on their findings and conclusions, beginning first with a brief review of literacy and aphasia research, and complexities encountered in these fields of investigation. This serves as a general background to our specific comments on Connor et al. (2001), which will be focusing on methodological issues and the importance of taking normative values in consideration when subjects with different socio-cultural or socio-economic backgrounds are assessed.

Share this page