Displaying 1 - 20 of 20
-
Duarte, R., Uhlmann, M., Van den Broek, D., Fitz, H., Petersson, K. M., & Morrison, A. (2018). Encoding symbolic sequences with spiking neural reservoirs. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN). doi:10.1109/IJCNN.2018.8489114.
Abstract
Biologically inspired spiking networks are an important tool to study the nature of computation and cognition in neural systems. In this work, we investigate the representational capacity of spiking networks engaged in an identity mapping task. We compare two schemes for encoding symbolic input, one in which input is injected as a direct current and one where input is delivered as a spatio-temporal spike pattern. We test the ability of networks to discriminate their input as a function of the number of distinct input symbols. We also compare performance using either membrane potentials or filtered spike trains as state variable. Furthermore, we investigate how the circuit behavior depends on the balance between excitation and inhibition, and the degree of synchrony and regularity in its internal dynamics. Finally, we compare different linear methods of decoding population activity onto desired target labels. Overall, our results suggest that even this simple mapping task is strongly influenced by design choices on input encoding, state-variables, circuit characteristics and decoding methods, and these factors can interact in complex ways. This work highlights the importance of constraining computational network models of behavior by available neurobiological evidence. -
Huettig, F., Lachmann, T., Reis, A., & Petersson, K. M. (2018). Distinguishing cause from effect - Many deficits associated with developmental dyslexia may be a consequence of reduced and suboptimal reading experience. Language, Cognition and Neuroscience, 33(3), 333-350. doi:10.1080/23273798.2017.1348528.
Abstract
The cause of developmental dyslexia is still unknown despite decades of intense research. Many causal explanations have been proposed, based on the range of impairments displayed by affected individuals. Here we draw attention to the fact that many of these impairments are also shown by illiterate individuals who have not received any or very little reading instruction. We suggest that this fact may not be coincidental and that the performance differences of both illiterates and individuals with dyslexia compared to literate controls are, to a substantial extent, secondary consequences of either reduced or suboptimal reading experience or a combination of both. The search for the primary causes of reading impairments will make progress if the consequences of quantitative and qualitative differences in reading experience are better taken into account and not mistaken for the causes of reading disorders. We close by providing four recommendations for future research. -
Inacio, F., Faisca, L., Forkstam, C., Araujo, S., Bramao, I., Reis, A., & Petersson, K. M. (2018). Implicit sequence learning is preserved in dyslexic children. Annals of Dyslexia, 68(1), 1-14. doi:10.1007/s11881-018-0158-x.
Abstract
This study investigates the implicit sequence learning abilities of dyslexic children using an artificial grammar learning task with an extended exposure period. Twenty children with developmental dyslexia participated in the study and were matched with two control groups—one matched for age and other for reading skills. During 3 days, all participants performed an acquisition task, where they were exposed to colored geometrical forms sequences with an underlying grammatical structure. On the last day, after the acquisition task, participants were tested in a grammaticality classification task. Implicit sequence learning was present in dyslexic children, as well as in both control groups, and no differences between groups were observed. These results suggest that implicit learning deficits per se cannot explain the characteristic reading difficulties of the dyslexics. -
Silva, S., Folia, V., Inácio, F., Castro, S. L., & Petersson, K. M. (2018). Modality effects in implicit artificial grammar learning: An EEG study. Brain Research, 1687, 50-59. doi:10.1016/j.brainres.2018.02.020.
Abstract
Recently, it has been proposed that sequence learning engages a combination of modality-specific operating networks and modality-independent computational principles. In the present study, we compared the behavioural and EEG outcomes of implicit artificial grammar learning in the visual vs. auditory modality. We controlled for the influence of surface characteristics of sequences (Associative Chunk Strength), thus focusing on the strictly structural aspects of sequence learning, and we adapted the paradigms to compensate for known frailties of the visual modality compared to audition (temporal presentation, fast presentation rate). The behavioural outcomes were similar across modalities. Favouring the idea of modality-specificity, ERPs in response to grammar violations differed in topography and latency (earlier and more anterior component in the visual modality), and ERPs in response to surface features emerged only in the auditory modality. In favour of modality-independence, we observed three common functional properties in the late ERPs of the two grammars: both were free of interactions between structural and surface influences, both were more extended in a grammaticality classification test than in a preference classification test, and both correlated positively and strongly with theta event-related-synchronization during baseline testing. Our findings support the idea of modality-specificity combined with modality-independence, and suggest that memory for visual vs. auditory sequences may largely contribute to cross-modal differences. -
Araújo, S., Faísca, L., Bramão, I., Reis, A., & Petersson, K. M. (2015). Lexical and sublexical orthographic processing: An ERP study with skilled and dyslexic adult readers. Brain and Language, 141, 16-27. doi:10.1016/j.bandl.2014.11.007.
Abstract
This ERP study investigated the cognitive nature of the P1–N1 components during orthographic processing. We used an implicit reading task with various types of stimuli involving different amounts of sublexical or lexical orthographic processing (words, pseudohomophones, pseudowords, nonwords, and symbols), and tested average and dyslexic readers. An orthographic regularity effect (pseudowords– nonwords contrast) was observed in the average but not in the dyslexic group. This suggests an early sensitivity to the dependencies among letters in word-forms that reflect orthographic structure, while the dyslexic brain apparently fails to be appropriately sensitive to these complex features. Moreover, in the adults the N1-response may already reflect lexical access: (i) the N1 was sensitive to the familiar vs. less familiar orthographic sequence contrast; (ii) and early effects of the phonological form (words-pseudohomophones contrast) were also found. Finally, the later N320 component was attenuated in the dyslexics, suggesting suboptimal processing in later stages of phonological analysis. -
Araújo, S., Reis, A., Petersson, K. M., & Faísca, L. (2015). Rapid automatized naming and reading performance: A meta-analysis. Journal of Educational Psychology, 107(3), 868-883. doi:10.1037/edu0000006.
Abstract
Evidence that rapid naming skill is associated with reading ability has become increasingly prevalent in recent years. However, there is considerable variation in the literature concerning the magnitude of this relationship. The objective of the present study was to provide a comprehensive analysis of the evidence on the relationship between rapid automatized naming (RAN) and reading performance. To this end, we conducted a meta-analysis of the correlational relationship between these 2 constructs to (a) determine the overall strength of the RAN–reading association and (b) identify variables that systematically moderate this relationship. A random-effects model analysis of data from 137 studies (857 effect sizes; 28,826 participants) indicated a moderate-to-strong relationship between RAN and reading performance (r = .43, I2 = 68.40). Further analyses revealed that RAN contributes to the 4 measures of reading (word reading, text reading, non-word reading, and reading comprehension), but higher coefficients emerged in favor of real word reading and text reading. RAN stimulus type and type of reading score were the factors with the greatest moderator effect on the magnitude of the RAN–reading relationship. The consistency of orthography and the subjects’ grade level were also found to impact this relationship, although the effect was contingent on reading outcome. It was less evident whether the subjects’ reading proficiency played a role in the relationship. Implications for future studies are discussed.Additional information
http://dx.doi.org/10.1037/edu0000006.supp -
Andics, A., McQueen, J. M., Petersson, K. M., Gál, V., Rudas, G., & Vidnyánszky, Z. (2010). Neural mechanisms for voice recognition. NeuroImage, 52, 1528-1540. doi:10.1016/j.neuroimage.2010.05.048.
Abstract
We investigated neural mechanisms that support voice recognition in a training paradigm with fMRI. The same listeners were trained on different weeks to categorize the mid-regions of voice-morph continua as an individual's voice. Stimuli implicitly defined a voice-acoustics space, and training explicitly defined a voice-identity space. The predefined centre of the voice category was shifted from the acoustic centre each week in opposite directions, so the same stimuli had different training histories on different tests. Cortical sensitivity to voice similarity appeared over different time-scales and at different representational stages. First, there were short-term adaptation effects: Increasing acoustic similarity to the directly preceding stimulus led to haemodynamic response reduction in the middle/posterior STS and in right ventrolateral prefrontal regions. Second, there were longer-term effects: Response reduction was found in the orbital/insular cortex for stimuli that were most versus least similar to the acoustic mean of all preceding stimuli, and, in the anterior temporal pole, the deep posterior STS and the amygdala, for stimuli that were most versus least similar to the trained voice-identity category mean. These findings are interpreted as effects of neural sharpening of long-term stored typical acoustic and category-internal values. The analyses also reveal anatomically separable voice representations: one in a voice-acoustics space and one in a voice-identity space. Voice-identity representations flexibly followed the trained identity shift, and listeners with a greater identity effect were more accurate at recognizing familiar voices. Voice recognition is thus supported by neural voice spaces that are organized around flexible ‘mean voice’ representations. -
Araújo, S., Pacheco, A., Faísca, L., Petersson, K. M., & Reis, A. (2010). Visual rapid naming and phonological abilities: Different subtypes in dyslexic children. International Journal of Psychology, 45, 443-452. doi:10.1080/00207594.2010.499949.
Abstract
One implication of the double-deficit hypothesis for dyslexia is that there should be subtypes of dyslexic readers that exhibit rapid naming deficits with or without concomitant phonological processing problems. In the current study, we investigated the validity of this hypothesis for Portuguese orthography, which is more consistent than English orthography, by exploring different cognitive profiles in a sample of dyslexic children. In particular, we were interested in identifying readers characterized by a pure rapid automatized naming deficit. We also examined whether rapid naming and phonological awareness independently account for individual differences in reading performance. We characterized the performance of dyslexic readers and a control group of normal readers matched for age on reading, visual rapid naming and phonological processing tasks. Our results suggest that there is a subgroup of dyslexic readers with intact phonological processing capacity (in terms of both accuracy and speed measures) but poor rapid naming skills. We also provide evidence for an independent association between rapid naming and reading competence in the dyslexic sample, when the effect of phonological skills was controlled. Altogether, the results are more consistent with the view that rapid naming problems in dyslexia represent a second core deficit rather than an exclusive phonological explanation for the rapid naming deficits. Furthermore, additional non-phonological processes, which subserve rapid naming performance, contribute independently to reading development. -
Bramão, I., Faísca, L., Forkstam, C., Reis, A., & Petersson, K. M. (2010). Cortical brain regions associated with color processing: An FMRI study. The Open Neuroimaging Journal, 4, 164-173. doi:10.2174/1874440001004010164.
Abstract
To clarify whether the neural pathways concerning color processing are the same for natural objects, for artifacts objects and for non-sense objects we examined functional magnetic resonance imaging (FMRI) responses during a covert naming task including the factors color (color vs. black&white (B&W)) and stimulus type (natural vs. artifacts vs. non-sense objects). Our results indicate that the superior parietal lobule and precuneus (BA 7) bilaterally, the right hippocampus and the right fusifom gyrus (V4) make part of a network responsible for color processing both for natural and artifacts objects, but not for non-sense objects. The recognition of non-sense colored objects compared to the recognition of color objects activated the posterior cingulate/precuneus (BA 7/23/31), suggesting that color attribute induces the mental operation of trying to associate a non-sense composition with a familiar objects. When color objects (both natural and artifacts) were contrasted with color nonobjects we observed activations in the right parahippocampal gyrus (BA 35/36), the superior parietal lobule (BA 7) bilaterally, the left inferior middle temporal region (BA 20/21) and the inferior and superior frontal regions (BA 10/11/47). These additional activations suggest that colored objects recruit brain regions that are related to visual semantic information/retrieval and brain regions related to visuo-spatial processing. Overall, the results suggest that color information is an attribute that improve object recognition (based on behavioral results) and activate a specific neural network related to visual semantic information that is more extensive than for B&W objects during object recognition -
Bramão, I., Faísca, L., Petersson, K. M., & Reis, A. (2010). The influence of surface color information and color knowledge information in object recognition. American Journal of Psychology, 123, 437-466. Retrieved from http://www.jstor.org/stable/10.5406/amerjpsyc.123.4.0437.
Abstract
In order to clarify whether the influence of color knowledge information in object recognition depends on the presence of the appropriate surface color, we designed a name—object verification task. The relationship between color and shape information provided by the name and by the object photo was manipulated in order to assess color interference independently of shape interference. We tested three different versions for each object: typically colored, black and white, and nontypically colored. The response times on the nonmatching trials were used to measure the interference between the name and the photo. We predicted that the more similar the name and the photo are, the longer it would take to respond. Overall, the color similarity effect disappeared in the black-and-white and nontypical color conditions, suggesting that the influence of color knowledge on object recognition depends on the presence of the appropriate surface color information. -
Folia, V., Uddén, J., De Vries, M., Forkstam, C., & Petersson, K. M. (2010). Artificial language learning in adults and children. In M. Gullberg, & P. Indefrey (
Eds. ), The earliest stages of language learning (pp. 188-220). Malden, MA: Wiley-Blackwell. -
Folia, V., Uddén, J., De Vries, M., Forkstam, C., & Petersson, K. M. (2010). Artificial language learning in adults and children. Language learning, 60(s2), 188-220. doi:10.1111/j.1467-9922.2010.00606.x.
Abstract
This article briefly reviews some recent work on artificial language learning in children and adults. The final part of the article is devoted to a theoretical formulation of the language learning problem from a mechanistic neurobiological viewpoint and we show that it is logically possible to combine the notion of innate language constraints with, for example, the notion of domain general learning mechanisms. A growing body of empirical evidence suggests that the mechanisms involved in artificial language learning and in structured sequence processing are shared with those of natural language acquisition and natural language processing. Finally, by theoretically analyzing a formal learning model, we highlight Fodor’s insight that it is logically possible to combine innate, domain-specific constraints with domain-general learning mechanisms. -
Groen, W. B., Tesink, C. M. J. Y., Petersson, K. M., Van Berkum, J. J. A., Van der Gaag, R. J., Hagoort, P., & Buitelaar, J. K. (2010). Semantic, factual, and social language comprehension in adolescents with autism: An fMRI study. Cerebral Cortex, 20(8), 1937-1945. doi:10.1093/cercor/bhp264.
Abstract
Language in high-functioning autism is characterized by pragmatic and semantic deficits, and people with autism have a reduced tendency to integrate information. Because the left and right inferior frontal (LIF and RIF) regions are implicated with integration of speaker information, world knowledge, and semantic knowledge, we hypothesized that abnormal functioning of the LIF and RIF regions might contribute to pragmatic and semantic language deficits in autism. Brain activation of sixteen 12- to 18-year-old, high-functioning autistic participants was measured with functional magnetic resonance imaging during sentence comprehension and compared with that of twenty-six matched controls. The content of the pragmatic sentence was congruent or incongruent with respect to the speaker characteristics (male/female, child/adult, and upper class/lower class). The semantic- and world-knowledge sentences were congruent or incongruent with respect to semantic expectancies and factual expectancies about the world, respectively. In the semanticknowledge and world-knowledge condition, activation of the LIF region did not differ between groups. In sentences that required integration of speaker information, the autism group showed abnormally reduced activation of the LIF region. The results suggest that people with autism may recruit the LIF region in a different manner in tasks that demand integration of social information. -
Meulenbroek, O., Kessels, R. P. C., De Rover, M., Petersson, K. M., Olde Rikkert, M. G. M., Rijpkema, M., & Fernández, G. (2010). Age-effects on associative object-location memory. Brain Research, 1315, 100-110. doi:10.1016/j.brainres.2009.12.011.
Abstract
Aging is accompanied by an impairment of associative memory. The medial temporal lobe and fronto-striatal network, both involved in associative memory, are known to decline functionally and structurally with age, leading to the so-called associative binding deficit and the resource deficit. Because the MTL and fronto-striatal network interact, they might also be able to support each other. We therefore employed an episodic memory task probing memory for sequences of object–location associations, where the demand on self-initiated processing was manipulated during encoding: either all the objects were visible simultaneously (rich environmental support) or every object became visible transiently (poor environmental support). Following the concept of resource deficit, we hypothesised that the elderly probably have difficulty using their declarative memory system when demands on self-initiated processing are high (poor environmental support). Our behavioural study showed that only the young use the rich environmental support in a systematic way, by placing the objects next to each other. With the task adapted for fMRI, we found that elderly showed stronger activity than young subjects during retrieval of environmentally richly encoded information in the basal ganglia, thalamus, left middle temporal/fusiform gyrus and right medial temporal lobe (MTL). These results indicate that rich environmental support leads to recruitment of the declarative memory system in addition to the fronto-striatal network in elderly, while the young use more posterior brain regions likely related to imagery. We propose that elderly try to solve the task by additional recruitment of stimulus-response associations, which might partly compensate their limited attentional resources. -
Petrovic, P., Kalso, E., Petersson, K. M., Andersson, J., Fransson, P., & Ingvar, M. (2010). A prefrontal non-opioid mechanism in placebo analgesia. Pain, 150, 59-65. doi:10.1016/j.pain.2010.03.011.
Abstract
ehavioral studies have suggested that placebo analgesia is partly mediated by the endogenous opioid system. Expanding on these results we have shown that the opioid-receptor-rich rostral anterior cingulate cortex (rACC) is activated in both placebo and opioid analgesia. However, there are also differences between the two treatments. While opioids have direct pharmacological effects, acting on the descending pain inhibitory system, placebo analgesia depends on neocortical top-down mechanisms. An important difference may be that expectations are met to a lesser extent in placebo treatment as compared with a specific treatment, yielding a larger error signal. As these processes previously have been shown to influence other types of perceptual experiences, we hypothesized that they also may drive placebo analgesia. Imaging studies suggest that lateral orbitofrontal cortex (lObfc) and ventrolateral prefrontal cortex (vlPFC) are involved in processing expectation and error signals. We re-analyzed two independent functional imaging experiments related to placebo analgesia and emotional placebo to probe for a differential processing in these regions during placebo treatment vs. opioid treatment and to test if this activity is associated with the placebo response. In the first dataset lObfc and vlPFC showed an enhanced activation in placebo analgesia vs. opioid analgesia. Furthermore, the rACC activity co-varied with the prefrontal regions in the placebo condition specifically. A similar correlation between rACC and vlPFC was reproduced in another dataset involving emotional placebo and correlated with the degree of the placebo effect. Our results thus support that placebo is different from specific treatment with a prefrontal top-down influence on rACC. -
Reis, A., Petersson, K. M., & Faísca, L. (2010). Neuroplasticidade: Os efeitos de aprendizagens específicas no cérebro humano. In C. Nunes, & S. N. Jesus (
Eds. ), Temas actuais em Psicologia (pp. 11-26). Faro: Universidade do Algarve. -
Reis, A., Faísca, L., Castro, S.-L., & Petersson, K. M. (2010). Preditores da leitura ao longo da escolaridade: Um estudo com alunos do 1 ciclo do ensino básico. In Actas do VII simpósio nacional de investigação em psicologia (pp. 3117-3132).
Abstract
A aquisição da leitura decorre ao longo de diversas etapas, desde o momento em que a criança inicia o contacto com o alfabeto até ao momento em que se torna um leitor competente, apto a ler correcta e fluentemente. Compreender a evolução desta competência através de uma análise da diferenciação do peso de variáveis preditoras da leitura possibilita teorizar sobre os mecanismos cognitivos envolvidos nas diferentes fases de desenvolvimento da leitura. Realizámos um estudo transversal com 568 alunos do segundo ao quarto ano do primeiro ciclo do Ensino Básico, em que se avaliou o impacto de capacidades de processamento fonológico, nomeação rápida, conhecimento letra-som e vocabulário, bem como de capacidades cognitivas mais gerais (inteligência não-verbal e memória de trabalho), na exactidão e velocidade da leitura. De uma forma geral, os resultados mostraram que, apesar da consciência fonológica permanecer como o preditor mais importante da exactidão e fluência da leitura, o seu peso decresce à medida que a escolaridade aumenta. Observou-se também que, à medida que o contributo da consciência fonológica para a explicação da velocidade de leitura diminuía, aumentava o contributo de outras variáveis mais associadas ao automatismo e reconhecimento lexical, tais como a nomeação rápida e o vocabulário. Em suma, podemos dizer que ao longo da escolaridade se observa uma alteração dinâmica dos processos cognitivos subjacentes à leitura, o que sugere que a criança evolui de uma estratégia de leitura ancorada em processamentos sub-lexicais, e como tal mais dependente de processamentos fonológicos, para uma estratégia baseada no reconhecimento ortográfico das palavras. -
Snijders, T. M., Petersson, K. M., & Hagoort, P. (2010). Effective connectivity of cortical and subcortical regions during unification of sentence structure. NeuroImage, 52, 1633-1644. doi:10.1016/j.neuroimage.2010.05.035.
Abstract
In a recent fMRI study we showed that left posterior middle temporal gyrus (LpMTG) subserves the retrieval of a word's lexical-syntactic properties from the mental lexicon (long-term memory), while left posterior inferior frontal gyrus (LpIFG) is involved in unifying (on-line integration of) this information into a sentence structure (Snijders et al., 2009). In addition, the right IFG, right MTG, and the right striatum were involved in the unification process. Here we report results from a psychophysical interactions (PPI) analysis in which we investigated the effective connectivity between LpIFG and LpMTG during unification, and how the right hemisphere areas and the striatum are functionally connected to the unification network. LpIFG and LpMTG both showed enhanced connectivity during the unification process with a region slightly superior to our previously reported LpMTG. Right IFG better predicted right temporal activity when unification processes were more strongly engaged, just as LpIFG better predicted left temporal activity. Furthermore, the striatum showed enhanced coupling to LpIFG and LpMTG during unification. We conclude that bilateral inferior frontal and posterior temporal regions are functionally connected during sentence-level unification. Cortico-subcortical connectivity patterns suggest cooperation between inferior frontal and striatal regions in performing unification operations on lexical-syntactic representations retrieved from LpMTG. -
Uddén, J., Folia, V., & Petersson, K. M. (2010). The neuropharmacology of implicit learning. Current Neuropharmacology, 8, 367-381. doi:10.2174/157015910793358178.
Abstract
Two decades of pharmacologic research on the human capacity to implicitly acquire knowledge as well as cognitive skills and procedures have yielded surprisingly few conclusive insights. We review the empirical literature of the neuropharmacology of implicit learning. We evaluate the findings in the context of relevant computational models related to neurotransmittors such as dopamine, serotonin, acetylcholine and noradrenalin. These include models for reinforcement learning, sequence production, and categorization. We conclude, based on the reviewed literature, that one can predict improved implicit acquisition by moderately elevated dopamine levels and impaired implicit acquisition by moderately decreased dopamine levels. These effects are most prominent in the dorsal striatum. This is supported by a range of behavioral tasks in the empirical literature. Similar predictions can be made for serotonin, although there is yet a lack of support in the literature for serotonin involvement in classical implicit learning tasks. There is currently a lack of evidence for a role of the noradrenergic and cholinergic systems in implicit and related forms of learning. GABA modulators, including benzodiazepines, seem to affect implicit learning in a complex manner and further research is needed. Finally, we identify allosteric AMPA receptors modulators as a potentially interesting target for future investigation of the neuropharmacology of procedural and implicit learning. -
Van Leeuwen, T. M., Petersson, K. M., & Hagoort, P. (2010). Synaesthetic colour in the brain: Beyond colour areas. A functional magnetic resonance imaging study of synaesthetes and matched controls. PLoS One, 5(8), E12074. doi:10.1371/journal.pone.0012074.
Abstract
Background: In synaesthesia, sensations in a particular modality cause additional experiences in a second, unstimulated modality (e.g., letters elicit colour). Understanding how synaesthesia is mediated in the brain can help to understand normal processes of perceptual awareness and multisensory integration. In several neuroimaging studies, enhanced brain activity for grapheme-colour synaesthesia has been found in ventral-occipital areas that are also involved in real colour processing. Our question was whether the neural correlates of synaesthetically induced colour and real colour experience are truly shared. Methodology/Principal Findings: First, in a free viewing functional magnetic resonance imaging (fMRI) experiment, we located main effects of synaesthesia in left superior parietal lobule and in colour related areas. In the left superior parietal lobe, individual differences between synaesthetes (projector-associator distinction) also influenced brain activity, confirming the importance of the left superior parietal lobe for synaesthesia. Next, we applied a repetition suppression paradigm in fMRI, in which a decrease in the BOLD (blood-oxygenated-level-dependent) response is generally observed for repeated stimuli. We hypothesized that synaesthetically induced colours would lead to a reduction in BOLD response for subsequently presented real colours, if the neural correlates were overlapping. We did find BOLD suppression effects induced by synaesthesia, but not within the colour areas. Conclusions/Significance: Because synaesthetically induced colours were not able to suppress BOLD effects for real colour, we conclude that the neural correlates of synaesthetic colour experience and real colour experience are not fully shared. We propose that synaesthetic colour experiences are mediated by higher-order visual pathways that lie beyond the scope of classical, ventral-occipital visual areas. Feedback from these areas, in which the left parietal cortex is likely to play an important role, may induce V4 activation and the percept of synaesthetic colour.
Share this page