Publications

Displaying 1 - 5 of 5
  • Fitz, H., Uhlmann, M., Van den Broek, D., Duarte, R., Hagoort, P., & Petersson, K. M. (2020). Neuronal spike-rate adaptation supports working memory in language processing. Proceedings of the National Academy of Sciences of the United States of America, 117(34), 20881-20889. doi:10.1073/pnas.2000222117.

    Abstract

    Language processing involves the ability to store and integrate pieces of
    information in working memory over short periods of time. According to
    the dominant view, information is maintained through sustained, elevated
    neural activity. Other work has argued that short-term synaptic facilitation
    can serve as a substrate of memory. Here, we propose an account where
    memory is supported by intrinsic plasticity that downregulates neuronal
    firing rates. Single neuron responses are dependent on experience and we
    show through simulations that these adaptive changes in excitability pro-
    vide memory on timescales ranging from milliseconds to seconds. On this
    account, spiking activity writes information into coupled dynamic variables
    that control adaptation and move at slower timescales than the membrane
    potential. From these variables, information is continuously read back into
    the active membrane state for processing. This neuronal memory mech-
    anism does not rely on persistent activity, excitatory feedback, or synap-
    tic plasticity for storage. Instead, information is maintained in adaptive
    conductances that reduce firing rates and can be accessed directly with-
    out cued retrieval. Memory span is systematically related to both the time
    constant of adaptation and baseline levels of neuronal excitability. Inter-
    ference effects within memory arise when adaptation is long-lasting. We
    demonstrate that this mechanism is sensitive to context and serial order
    which makes it suitable for temporal integration in sequence processing
    within the language domain. We also show that it enables the binding of
    linguistic features over time within dynamic memory registers. This work
    provides a step towards a computational neurobiology of language.
  • Duarte, R., Uhlmann, M., Van den Broek, D., Fitz, H., Petersson, K. M., & Morrison, A. (2018). Encoding symbolic sequences with spiking neural reservoirs. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN). doi:10.1109/IJCNN.2018.8489114.

    Abstract

    Biologically inspired spiking networks are an important tool to study the nature of computation and cognition in neural systems. In this work, we investigate the representational capacity of spiking networks engaged in an identity mapping task. We compare two schemes for encoding symbolic input, one in which input is injected as a direct current and one where input is delivered as a spatio-temporal spike pattern. We test the ability of networks to discriminate their input as a function of the number of distinct input symbols. We also compare performance using either membrane potentials or filtered spike trains as state variable. Furthermore, we investigate how the circuit behavior depends on the balance between excitation and inhibition, and the degree of synchrony and regularity in its internal dynamics. Finally, we compare different linear methods of decoding population activity onto desired target labels. Overall, our results suggest that even this simple mapping task is strongly influenced by design choices on input encoding, state-variables, circuit characteristics and decoding methods, and these factors can interact in complex ways. This work highlights the importance of constraining computational network models of behavior by available neurobiological evidence.
  • Huettig, F., Lachmann, T., Reis, A., & Petersson, K. M. (2018). Distinguishing cause from effect - Many deficits associated with developmental dyslexia may be a consequence of reduced and suboptimal reading experience. Language, Cognition and Neuroscience, 33(3), 333-350. doi:10.1080/23273798.2017.1348528.

    Abstract

    The cause of developmental dyslexia is still unknown despite decades of intense research. Many causal explanations have been proposed, based on the range of impairments displayed by affected individuals. Here we draw attention to the fact that many of these impairments are also shown by illiterate individuals who have not received any or very little reading instruction. We suggest that this fact may not be coincidental and that the performance differences of both illiterates and individuals with dyslexia compared to literate controls are, to a substantial extent, secondary consequences of either reduced or suboptimal reading experience or a combination of both. The search for the primary causes of reading impairments will make progress if the consequences of quantitative and qualitative differences in reading experience are better taken into account and not mistaken for the causes of reading disorders. We close by providing four recommendations for future research.
  • Inacio, F., Faisca, L., Forkstam, C., Araujo, S., Bramao, I., Reis, A., & Petersson, K. M. (2018). Implicit sequence learning is preserved in dyslexic children. Annals of Dyslexia, 68(1), 1-14. doi:10.1007/s11881-018-0158-x.

    Abstract

    This study investigates the implicit sequence learning abilities of dyslexic children using an artificial grammar learning task with an extended exposure period. Twenty children with developmental dyslexia participated in the study and were matched with two control groups—one matched for age and other for reading skills. During 3 days, all participants performed an acquisition task, where they were exposed to colored geometrical forms sequences with an underlying grammatical structure. On the last day, after the acquisition task, participants were tested in a grammaticality classification task. Implicit sequence learning was present in dyslexic children, as well as in both control groups, and no differences between groups were observed. These results suggest that implicit learning deficits per se cannot explain the characteristic reading difficulties of the dyslexics.
  • Silva, S., Folia, V., Inácio, F., Castro, S. L., & Petersson, K. M. (2018). Modality effects in implicit artificial grammar learning: An EEG study. Brain Research, 1687, 50-59. doi:10.1016/j.brainres.2018.02.020.

    Abstract

    Recently, it has been proposed that sequence learning engages a combination of modality-specific operating networks and modality-independent computational principles. In the present study, we compared the behavioural and EEG outcomes of implicit artificial grammar learning in the visual vs. auditory modality. We controlled for the influence of surface characteristics of sequences (Associative Chunk Strength), thus focusing on the strictly structural aspects of sequence learning, and we adapted the paradigms to compensate for known frailties of the visual modality compared to audition (temporal presentation, fast presentation rate). The behavioural outcomes were similar across modalities. Favouring the idea of modality-specificity, ERPs in response to grammar violations differed in topography and latency (earlier and more anterior component in the visual modality), and ERPs in response to surface features emerged only in the auditory modality. In favour of modality-independence, we observed three common functional properties in the late ERPs of the two grammars: both were free of interactions between structural and surface influences, both were more extended in a grammaticality classification test than in a preference classification test, and both correlated positively and strongly with theta event-related-synchronization during baseline testing. Our findings support the idea of modality-specificity combined with modality-independence, and suggest that memory for visual vs. auditory sequences may largely contribute to cross-modal differences.

Share this page