Displaying 1 - 31 of 31
-
Amelink, J., Postema, M., Kong, X., Schijven, D., Carrion Castillo, A., Soheili-Nezhad, S., Sha, Z., Molz, B., Joliot, M., Fisher, S. E., & Francks, C. (2024). Imaging genetics of language network functional connectivity reveals links with language-related abilities, dyslexia and handedness. Communications Biology, 7: 1209. doi:10.1038/s42003-024-06890-3.
Abstract
Language is supported by a distributed network of brain regions with a particular contribution from the left hemisphere. A multi-level understanding of this network requires studying the genetic architecture of its functional connectivity and hemispheric asymmetry. We used resting state functional imaging data from 29,681 participants from the UK Biobank to measure functional connectivity between 18 left-hemisphere regions implicated in multimodal sentence-level processing, as well as their homotopic regions in the right-hemisphere, and interhemispheric connections. Multivariate genome-wide association analysis of this total network, based on common genetic variants (with population frequencies above 1%), identified 14 loci associated with network functional connectivity. Three of these loci were also associated with hemispheric differences of intrahemispheric connectivity. Polygenic dispositions to lower language-related abilities, dyslexia and left-handedness were associated with generally reduced leftward asymmetry of functional connectivity, but with some trait- and connection-specific exceptions. Exome-wide association analysis based on rare, protein-altering variants (frequencies < 1%) suggested 7 additional genes. These findings shed new light on the genetic contributions to language network connectivity and its asymmetry based on both common and rare genetic variants, and reveal genetic links to language-related traits and hemispheric dominance for hand preference. -
Kurth, F., Schijven, D., Van den Heuvel, O. A., Hoogman, M., Van Rooij, D., Stein, D. J., Buitelaar, J. K., Bölte, S., Auzias, G., Kushki, A., Venkatasubramanian, G., Rubia, K., Bollmann, S., Isaksson, J., Jaspers-Fayer, F., Marsh, R., Batistuzzo, M. C., Arnold, P. D., Bressan, R. A., Stewart, E. S. Kurth, F., Schijven, D., Van den Heuvel, O. A., Hoogman, M., Van Rooij, D., Stein, D. J., Buitelaar, J. K., Bölte, S., Auzias, G., Kushki, A., Venkatasubramanian, G., Rubia, K., Bollmann, S., Isaksson, J., Jaspers-Fayer, F., Marsh, R., Batistuzzo, M. C., Arnold, P. D., Bressan, R. A., Stewart, E. S., Gruner, P., Sorensen, L., Pan, P. M., Silk, T. J., Gur, R. C., Cubillo, A. I., Haavik, J., O'Gorman Tuura, R. L., Hartman, C. A., Calvo, R., McGrath, J., Calderoni, S., Jackowski, A., Chantiluke, K. C., Satterthwaite, T. D., Busatto, G. F., Nigg, J. T., Gur, R. E., Retico, A., Tosetti, M., Gallagher, L., Szeszko, P. R., Neufeld, J., Ortiz, A. E., Ghisleni, C., Lazaro, L., Hoekstra, P. J., Anagnostou, E., Hoekstra, L., Simpson, B., Plessen, J. K., Deruelle, C., Soreni, N., James, A., Narayanaswamy, J., Reddy, J. Y. C., Fitzgerald, J., Bellgrove, M. A., Salum, G. A., Janssen, J., Muratori, F., Vila, M., Garcia Giral, M., Ameis, S. H., Bosco, P., Lundin Remnélius, K., Huyser, C., Pariente, J. C., Jalbrzikowski, M., Rosa, P. G. P., O'Hearn, K. M., Ehrlich, S., Mollon, J., Zugman, A., Christakou, A., Arango, C., Fisher, S. E., Kong, X., Franke, B., Medland, S. E., Thomopoulos, S. I., Jahanshad, N., Glahn, D. C., Thompson, P. M., Francks, C., & Luders, E. (2024). Large-scale analysis of structural brain asymmetries during neurodevelopment: Age effects and sex differences in 4,265 children and adolescents. Human Brain Mapping, 45(11): e26754. doi:10.1002/hbm.26754.
Abstract
Only a small number of studies have assessed structural differences between the two hemispheres during childhood and adolescence. However, the existing findings lack consistency or are restricted to a particular brain region, a specific brain feature, or a relatively narrow age range. Here, we investigated associations between brain asymmetry and age as well as sex in one of the largest pediatric samples to date (n = 4265), aged 1–18 years, scanned at 69 sites participating in the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) consortium. Our study revealed that significant brain asymmetries already exist in childhood, but their magnitude and direction depend on the brain region examined and the morphometric measurement used (cortical volume or thickness, regional surface area, or subcortical volume). With respect to effects of age, some asymmetries became weaker over time while others became stronger; sometimes they even reversed direction. With respect to sex differences, the total number of regions exhibiting significant asymmetries was larger in females than in males, while the total number of measurements indicating significant asymmetries was larger in males (as we obtained more than one measurement per cortical region). The magnitude of the significant asymmetries was also greater in males. However, effect sizes for both age effects and sex differences were small. Taken together, these findings suggest that cerebral asymmetries are an inherent organizational pattern of the brain that manifests early in life. Overall, brain asymmetry appears to be relatively stable throughout childhood and adolescence, with some differential effects in males and females. -
Schijven, D., Soheili-Nezhad, S., Fisher, S. E., & Francks, C. (2024). Exome-wide analysis implicates rare protein-altering variants in human handedness. Nature Communications, 15: 2632. doi:10.1038/s41467-024-46277-w.
Abstract
Handedness is a manifestation of brain hemispheric specialization. Left-handedness occurs at increased rates in neurodevelopmental disorders. Genome-wide association studies have identified common genetic effects on handedness or brain asymmetry, which mostly involve variants outside protein-coding regions and may affect gene expression. Implicated genes include several that encode tubulins (microtubule components) or microtubule-associated proteins. Here we examine whether left-handedness is also influenced by rare coding variants (frequencies ≤ 1%), using exome data from 38,043 left-handed and 313,271 right-handed individuals from the UK Biobank. The beta-tubulin gene TUBB4B shows exome-wide significant association, with a rate of rare coding variants 2.7 times higher in left-handers than right-handers. The TUBB4B variants are mostly heterozygous missense changes, but include two frameshifts found only in left-handers. Other TUBB4B variants have been linked to sensorineural and/or ciliopathic disorders, but not the variants found here. Among genes previously implicated in autism or schizophrenia by exome screening, DSCAM and FOXP1 show evidence for rare coding variant association with left-handedness. The exome-wide heritability of left-handedness due to rare coding variants was 0.91%. This study reveals a role for rare, protein-altering variants in left-handedness, providing further evidence for the involvement of microtubules and disorder-relevant genes.Additional information
supplementary information reporting summary peer review file link to preprint -
Soheili-Nezhad, S., Schijven, D., Mars, R. B., Fisher, S. E., & Francks, C. (2024). Distinct impact modes of polygenic disposition to dyslexia in the adult brain. Science Advances, 10(51): eadq2754. doi:10.1126/sciadv.adq2754.
Abstract
Dyslexia is a common condition that impacts reading ability. Identifying affected brain networks has been hampered by limited sample sizes of imaging case-control studies. We focused instead on brain structural correlates of genetic disposition to dyslexia in large-scale population data. In over 30,000 adults (UK Biobank), higher polygenic disposition to dyslexia was associated with lower head and brain size, and especially reduced volume and/or altered fiber density in networks involved in motor control, language and vision. However, individual genetic variants disposing to dyslexia often had quite distinct patterns of association with brain structural features. Independent component analysis applied to brain-wide association maps for thousands of dyslexia-disposing genetic variants revealed multiple impact modes on the brain, that corresponded to anatomically distinct areas with their own genomic profiles of association. Polygenic scores for dyslexia-related cognitive and educational measures, as well as attention-deficit/hyperactivity disorder, showed similarities to dyslexia polygenic disposition in terms of brain-wide associations, with microstructure of the internal capsule consistently implicated. In contrast, lower volume of the primary motor cortex was only associated with higher dyslexia polygenic disposition among all traits. These findings robustly reveal heterogeneous neurobiological aspects of dyslexia genetic disposition, and whether they are shared or unique with respect to other genetically correlated traits.Additional information
link to preprint -
Schijven, D., Postema, M., Fukunaga, M., Matsumoto, J., Miura, K., De Zwarte, S. M., Van Haren, N. E. M., Cahn, W., Hulshoff Pol, H. E., Kahn, R. S., Ayesa-Arriola, R., Ortiz-García de la Foz, V., Tordesillas-Gutierrez, D., Vázquez-Bourgon, J., Crespo-Facorro, B., Alnæs, D., Dahl, A., Westlye, L. T., Agartz, I., Andreassen, O. A. and 129 moreSchijven, D., Postema, M., Fukunaga, M., Matsumoto, J., Miura, K., De Zwarte, S. M., Van Haren, N. E. M., Cahn, W., Hulshoff Pol, H. E., Kahn, R. S., Ayesa-Arriola, R., Ortiz-García de la Foz, V., Tordesillas-Gutierrez, D., Vázquez-Bourgon, J., Crespo-Facorro, B., Alnæs, D., Dahl, A., Westlye, L. T., Agartz, I., Andreassen, O. A., Jönsson, E. G., Kochunov, P., Bruggemann, J. M., Catts, S. V., Michie, P. T., Mowry, B. J., Quidé, Y., Rasser, P. E., Schall, U., Scott, R. J., Carr, V. J., Green, M. J., Henskens, F. A., Loughland, C. M., Pantelis, C., Weickert, C. S., Weickert, T. W., De Haan, L., Brosch, K., Pfarr, J.-K., Ringwald, K. G., Stein, F., Jansen, A., Kircher, T. T., Nenadić, I., Krämer, B., Gruber, O., Satterthwaite, T. D., Bustillo, J., Mathalon, D. H., Preda, A., Calhoun, V. D., Ford, J. M., Potkin, S. G., Chen, J., Tan, Y., Wang, Z., Xiang, H., Fan, F., Bernardoni, F., Ehrlich, S., Fuentes-Claramonte, P., Garcia-Leon, M. A., Guerrero-Pedraza, A., Salvador, R., Sarró, S., Pomarol-Clotet, E., Ciullo, V., Piras, F., Vecchio, D., Banaj, N., Spalletta, G., Michielse, S., Van Amelsvoort, T., Dickie, E. W., Voineskos, A. N., Sim, K., Ciufolini, S., Dazzan, P., Murray, R. M., Kim, W.-S., Chung, Y.-C., Andreou, C., Schmidt, A., Borgwardt, S., McIntosh, A. M., Whalley, H. C., Lawrie, S. M., Du Plessis, S., Luckhoff, H. K., Scheffler, F., Emsley, R., Grotegerd, D., Lencer, R., Dannlowski, U., Edmond, J. T., Rootes-Murdy, K., Stephen, J. M., Mayer, A. R., Antonucci, L. A., Fazio, L., Pergola, G., Bertolino, A., Díaz-Caneja, C. M., Janssen, J., Lois, N. G., Arango, C., Tomyshev, A. S., Lebedeva, I., Cervenka, S., Sellgren, C. M., Georgiadis, F., Kirschner, M., Kaiser, S., Hajek, T., Skoch, A., Spaniel, F., Kim, M., Kwak, Y. B., Oh, S., Kwon, J. S., James, A., Bakker, G., Knöchel, C., Stäblein, M., Oertel, V., Uhlmann, A., Howells, F. M., Stein, D. J., Temmingh, H. S., Diaz-Zuluaga, A. M., Pineda-Zapata, J. A., López-Jaramillo, C., Homan, S., Ji, E., Surbeck, W., Homan, P., Fisher, S. E., Franke, B., Glahn, D. C., Gur, R. C., Hashimoto, R., Jahanshad, N., Luders, E., Medland, S. E., Thompson, P. M., Turner, J. A., Van Erp, T. G., & Francks, C. (2023). Large-scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium. Proceedings of the National Academy of Sciences of the United States of America, 120(14): e2213880120. doi:10.1073/pnas.2213880120.
Abstract
Left–right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case–control study of structural brain asymmetries in schizophrenia, with MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case–control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case–control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case–control status. Subtle case–control differences of brain macrostructural asymmetry may reflect differences at the molecular, cytoarchitectonic, or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia. -
Sha, Z., Schijven, D., Fisher, S. E., & Francks, C. (2023). Genetic architecture of the white matter connectome of the human brain. Science Advances, 9(7): eadd2870. doi:10.1126/sciadv.add2870.
Abstract
White matter tracts form the structural basis of large-scale brain networks. We applied brain-wide tractography to diffusion images from 30,810 adults (U.K. Biobank) and found significant heritability for 90 node-level and 851 edge-level network connectivity measures. Multivariate genome-wide association analyses identified 325 genetic loci, of which 80% had not been previously associated with brain metrics. Enrichment analyses implicated neurodevelopmental processes including neurogenesis, neural differentiation, neural migration, neural projection guidance, and axon development, as well as prenatal brain expression especially in stem cells, astrocytes, microglia, and neurons. The multivariate association profiles implicated 31 loci in connectivity between core regions of the left-hemisphere language network. Polygenic scores for psychiatric, neurological, and behavioral traits also showed significant multivariate associations with structural connectivity, each implicating distinct sets of brain regions with trait-relevant functional profiles. This large-scale mapping study revealed common genetic contributions to variation in the structural connectome of the human brain.Additional information
figs. S1 to S14, legends for tables S1 to S31 tables S1 to S31 link to Preprint on bioRxiv -
Alagöz, G., Molz, B., Eising, E., Schijven, D., Francks, C., Jason L., S., & Fisher, S. E. (2022). Using neuroimaging genomics to investigate the evolution of human brain structure. Proceedings of the National Academy of Sciences of the United States of America, 119(40): e2200638119. doi:10.1073/pnas.2200638119.
Abstract
Alterations in brain size and organization represent some of the most distinctive changes in the emergence of our species. Yet, there is limited understanding of how genetic factors contributed to altered neuroanatomy during human evolution. Here, we analyze neuroimaging and genetic data from up to 30,000 people in the UK Biobank and integrate with genomic annotations for different aspects of human evolution, including those based on ancient DNA and comparative genomics. We show that previously reported signals of recent polygenic selection for cortical anatomy are not replicable in a more ancestrally homogeneous sample. We then investigate relationships between evolutionary annotations and common genetic variants shaping cortical surface area and white-matter connectivity for each hemisphere. Our analyses identify single-nucleotide polymorphism heritability enrichment in human-gained regulatory elements that are active in early brain development, affecting surface areas of several parts of the cortex, including left-hemispheric speech-associated regions. We also detect heritability depletion in genomic regions with Neanderthal ancestry for connectivity of the uncinate fasciculus; this is a white-matter tract involved in memory, language, and socioemotional processing with relevance to neuropsychiatric disorders. Finally, we show that common genetic loci associated with left-hemispheric pars triangularis surface area overlap with a human-gained enhancer and affect regulation of ZIC4, a gene implicated in neurogenesis. This work demonstrates how genomic investigations of present-day neuroanatomical variation can help shed light on the complexities of our evolutionary past.Additional information
supplementary information -
Kong, X., Postema, M., Guadalupe, T., De Kovel, C. G. F., Boedhoe, P. S. W., Hoogman, M., Mathias, S. R., Van Rooij, D., Schijven, D., Glahn, D. C., Medland, S. E., Jahanshad, N., Thomopoulos, S. I., Turner, J. A., Buitelaar, J., Van Erp, T. G. M., Franke, B., Fisher, S. E., Van den Heuvel, O. A., Schmaal, L. and 2 moreKong, X., Postema, M., Guadalupe, T., De Kovel, C. G. F., Boedhoe, P. S. W., Hoogman, M., Mathias, S. R., Van Rooij, D., Schijven, D., Glahn, D. C., Medland, S. E., Jahanshad, N., Thomopoulos, S. I., Turner, J. A., Buitelaar, J., Van Erp, T. G. M., Franke, B., Fisher, S. E., Van den Heuvel, O. A., Schmaal, L., Thompson, P. M., & Francks, C. (2022). Mapping brain asymmetry in health and disease through the ENIGMA consortium. Human Brain Mapping, 43(1), 167-181. doi:10.1002/hbm.25033.
Abstract
Left-right asymmetry of the human brain is one of its cardinal features, and also a complex, multivariate trait. Decades of research have suggested that brain asymmetry may be altered in psychiatric disorders. However, findings have been inconsistent and often based on small sample sizes. There are also open questions surrounding which structures are asymmetrical on average in the healthy population, and how variability in brain asymmetry relates to basic biological variables such as age and sex. Over the last four years, the ENIGMA-Laterality Working Group has published six studies of grey matter morphological asymmetry based on total sample sizes from roughly 3,500 to 17,000 individuals, which were between one and two orders of magnitude larger than those published in previous decades. A population-level mapping of average asymmetry was achieved, including an
intriguing fronto-occipital gradient of cortical thickness asymmetry in healthy brains. ENIGMA’s multidataset approach also supported an empirical illustration of reproducibility of hemispheric differences across datasets. Effect sizes were estimated for grey matter asymmetry based on large, international,
samples in relation to age, sex, handedness, and brain volume, as well as for three psychiatric disorders:Autism Spectrum Disorder was associated with subtly reduced asymmetry of cortical thickness at regions spread widely over the cortex; Pediatric Obsessive-Compulsive Disorder was associated with altered subcortical asymmetry; Major Depressive Disorder was not significantly associated with changes
of asymmetry. Ongoing studies are examining brain asymmetry in other disorders. Moreover, a groundwork has been laid for possibly identifying shared genetic contributions to brain asymmetry and disorders. -
Maihofer, A. X., Choi, K. W., Coleman, J. R., Daskalakis, N. P., Denckla, C. A., Ketema, E., Morey, R. A., Polimanti, R., Ratanatharathorn, A., Torres, K., Wingo, A. P., Zai, C. C., Aiello, A. E., Almli, L. M., Amstadter, A. B., Andersen, S. B., Andreassen, O. A., Arbisi, P. A., Ashley-Koch, A. E., Austin, S. B. and 161 moreMaihofer, A. X., Choi, K. W., Coleman, J. R., Daskalakis, N. P., Denckla, C. A., Ketema, E., Morey, R. A., Polimanti, R., Ratanatharathorn, A., Torres, K., Wingo, A. P., Zai, C. C., Aiello, A. E., Almli, L. M., Amstadter, A. B., Andersen, S. B., Andreassen, O. A., Arbisi, P. A., Ashley-Koch, A. E., Austin, S. B., Avdibegovic, E., Borglum, A. D., Babic, D., Bækvad-Hansen, M., Baker, D. G., Beckham, J. C., Bierut, L. J., Bisson, J. I., Boks, M. P., Bolger, E. A., Bradley, B., Brashear, M., Breen, G., Bryant, R. A., Bustamante, A. C., Bybjerg-Grauholm, J., Calabrese, J. R., Caldas-de-Almeida, J. M., Chen, C.-Y., Dale, A. M., Dalvie, S., Deckert, J., Delahanty, D. L., Dennis, M. F., Disner, S. G., Domschke, K., Duncan, L. E., Dzubur Kulenovic, A., Erbes, C. R., Evans, A., Farrer, L. A., Feeny, N. C., Flory, J. D., Forbes, D., Franz, C. E., Galea, S., Garrett, M. E., Gautam, A., Gelaye, B., Gelernter, J., Geuze, E., Gillespie, C. F., Goçi, A., Gordon, S. D., Guffanti, G., Hammamieh, R., Hauser, M. A., Heath, A. C., Hemmings, S. M., Hougaard, D. M., Jakovljevic, M., Jett, M., Johnson, E. O., Jones, I., Jovanovic, T., Qin, X.-J., Karstoft, K.-I., Kaufman, M. L., Kessler, R. C., Khan, A., Kimbrel, N. A., King, A. P., Koen, N., Kranzler, H. R., Kremen, W. S., Lawford, B. R., Lebois, L. A., Lewis, C., Liberzon, I., Linnstaedt, S. D., Logue, M. W., Lori, A., Lugonja, B., Luykx, J. J., Lyons, M. J., Maples-Keller, J. L., Marmar, C., Martin, N. G., Maurer, D., Mavissakalian, M. R., McFarlane, A., McGlinchey, R. E., McLaughlin, K. A., McLean, S. A., Mehta, D., Mellor, R., Michopoulos, V., Milberg, W., Miller, M. W., Morris, C. P., Mors, O., Mortensen, P. B., Nelson, E. C., Nordentoft, M., Norman, S. B., O’Donnell, M., Orcutt, H. K., Panizzon, M. S., Peters, E. S., Peterson, A. L., Peverill, M., Pietrzak, R. H., Polusny, M. A., Rice, J. P., Risbrough, V. B., Roberts, A. L., Rothbaum, A. O., Rothbaum, B. O., Roy-Byrne, P., Ruggiero, K. J., Rung, A., Rutten, B. P., Saccone, N. L., Sanchez, S. E., Schijven, D., Seedat, S., Seligowski, A. V., Seng, J. S., Sheerin, C. M., Silove, D., Smith, A. K., Smoller, J. W., Sponheim, S. R., Stein, D. J., Stevens, J. S., Teicher, M. H., Thompson, W. K., Trapido, E., Uddin, M., Ursano, R. J., van den Heuvel, L. L., Van Hooff, M., Vermetten, E., Vinkers, C., Voisey, J., Wang, Y., Wang, Z., Werge, T., Williams, M. A., Williamson, D. E., Winternitz, S., Wolf, C., Wolf, E. J., Yehuda, R., Young, K. A., Young, R. M., Zhao, H., Zoellner, L. A., Haas, M., Lasseter, H., Provost, A. C., Salem, R. M., Sebat, J., Shaffer, R. A., Wu, T., Ripke, S., Daly, M. J., Ressler, K. J., Koenen, K. C., Stein, M. B., & Nievergelt, C. M. (2022). Enhancing discovery of genetic variants for posttraumatic stress disorder through integration of quantitative phenotypes and trauma exposure information. Biological Psychiatry, 91(7), 626-636. doi:10.1016/j.biopsych.2021.09.020.
Abstract
Background
Posttraumatic stress disorder (PTSD) is heritable and a potential consequence of exposure to traumatic stress. Evidence suggests that a quantitative approach to PTSD phenotype measurement and incorporation of lifetime trauma exposure (LTE) information could enhance the discovery power of PTSD genome-wide association studies (GWASs).
Methods
A GWAS on PTSD symptoms was performed in 51 cohorts followed by a fixed-effects meta-analysis (N = 182,199 European ancestry participants). A GWAS of LTE burden was performed in the UK Biobank cohort (N = 132,988). Genetic correlations were evaluated with linkage disequilibrium score regression. Multivariate analysis was performed using Multi-Trait Analysis of GWAS. Functional mapping and annotation of leading loci was performed with FUMA. Replication was evaluated using the Million Veteran Program GWAS of PTSD total symptoms.
Results
GWASs of PTSD symptoms and LTE burden identified 5 and 6 independent genome-wide significant loci, respectively. There was a 72% genetic correlation between PTSD and LTE. PTSD and LTE showed largely similar patterns of genetic correlation with other traits, albeit with some distinctions. Adjusting PTSD for LTE reduced PTSD heritability by 31%. Multivariate analysis of PTSD and LTE increased the effective sample size of the PTSD GWAS by 20% and identified 4 additional loci. Four of these 9 PTSD loci were independently replicated in the Million Veteran Program.
Conclusions
Through using a quantitative trait measure of PTSD, we identified novel risk loci not previously identified using prior case-control analyses. PTSD and LTE have a high genetic overlap that can be leveraged to increase discovery power through multivariate methods. -
Van der Spek, J., Den Hoed, J., Snijders Blok, L., Dingemans, A. J. M., Schijven, D., Nellaker, C., Venselaar, H., Astuti, G. D. N., Barakat, T. S., Bebin, E. M., Beck-Wödl, S., Beunders, G., Brown, N. J., Brunet, T., Brunner, H. G., Campeau, P. M., Čuturilo, G., Gilissen, C., Haack, T. B., Hüning, I. and 26 moreVan der Spek, J., Den Hoed, J., Snijders Blok, L., Dingemans, A. J. M., Schijven, D., Nellaker, C., Venselaar, H., Astuti, G. D. N., Barakat, T. S., Bebin, E. M., Beck-Wödl, S., Beunders, G., Brown, N. J., Brunet, T., Brunner, H. G., Campeau, P. M., Čuturilo, G., Gilissen, C., Haack, T. B., Hüning, I., Husain, R. A., Kamien, B., Lim, S. C., Lovrecic, L., Magg, J., Maver, A., Miranda, V., Monteil, D. C., Ockeloen, C. W., Pais, L. S., Plaiasu, V., Raiti, L., Richmond, C., Rieß, A., Schwaibold, E. M. C., Simon, M. E. H., Spranger, S., Tan, T. Y., Thompson, M. L., De Vries, B. B., Wilkins, E. J., Willemsen, M. H., Francks, C., Vissers, L. E. L. M., Fisher, S. E., & Kleefstra, T. (2022). Inherited variants in CHD3 show variable expressivity in Snijders Blok-Campeau syndrome. Genetics in Medicine, 24(6), 1283-1296. doi:10.1016/j.gim.2022.02.014.
Abstract
Purpose
Common diagnostic next-generation sequencing strategies are not optimized to identify inherited variants in genes associated with dominant neurodevelopmental disorders as causal when the transmitting parent is clinically unaffected, leaving a significant number of cases with neurodevelopmental disorders undiagnosed.
Methods
We characterized 21 families with inherited heterozygous missense or protein-truncating variants in CHD3, a gene in which de novo variants cause Snijders Blok-Campeau syndrome.
Results
Computational facial and Human Phenotype Ontology–based comparisons showed that the phenotype of probands with inherited CHD3 variants overlaps with the phenotype previously associated with de novo CHD3 variants, whereas heterozygote parents are mildly or not affected, suggesting variable expressivity. In addition, similarly reduced expression levels of CHD3 protein in cells of an affected proband and of healthy family members with a CHD3 protein-truncating variant suggested that compensation of expression from the wild-type allele is unlikely to be an underlying mechanism. Notably, most inherited CHD3 variants were maternally transmitted.
Conclusion
Our results point to a significant role of inherited variation in Snijders Blok-Campeau syndrome, a finding that is critical for correct variant interpretation and genetic counseling and warrants further investigation toward understanding the broader contributions of such variation to the landscape of human disease. -
Kong, X., Postema, M., Schijven, D., Carrion Castillo, A., Pepe, A., Crivello, F., Joliot, M., Mazoyer, B., Fisher, S. E., & Francks, C. (2021). Large-scale phenomic and genomic analysis of brain asymmetrical skew. Cerebral Cortex, 31(9), 4151-4168. doi:10.1093/cercor/bhab075.
Abstract
The human cerebral hemispheres show a left–right asymmetrical torque pattern, which has been claimed to be absent in chimpanzees. The functional significance and developmental mechanisms are unknown. Here, we carried out the largest-ever analysis of global brain shape asymmetry in magnetic resonance imaging data. Three population datasets were used, UK Biobank (N = 39 678), Human Connectome Project (N = 1113), and BIL&GIN (N = 453). At the population level, there was an anterior and dorsal skew of the right hemisphere, relative to the left. Both skews were associated independently with handedness, and various regional gray and white matter metrics oppositely in the two hemispheres, as well as other variables related to cognitive functions, sociodemographic factors, and physical and mental health. The two skews showed single nucleotide polymorphisms-based heritabilities of 4–13%, but also substantial polygenicity in causal mixture model analysis, and no individually significant loci were found in genome-wide association studies for either skew. There was evidence for a significant genetic correlation between horizontal brain skew and autism, which requires future replication. These results provide the first large-scale description of population-average brain skews and their inter-individual variations, their replicable associations with handedness, and insights into biological and other factors which associate with human brain asymmetry. -
Pazoki, R., Lin, B. D., Van Eijk, K. R., Schijven, D., De Zwarte, S., GROUP Investigators, Guloksuz, S., & Luykx, J. J. (2021). Phenome-wide and genome-wide analyses of quality of life in schizophrenia. BJPsych Open, 7(1): e13. doi:10.1192/bjo.2020.140.
Abstract
Background
Schizophrenia negatively affects quality of life (QoL). A handful of variables from small studies have been reported to influence QoL in patients with schizophrenia, but a study comprehensively dissecting the genetic and non-genetic contributing factors to QoL in these patients is currently lacking.
Aims
We adopted a hypothesis-generating approach to assess the phenotypic and genotypic determinants of QoL in schizophrenia.
Method
The study population comprised 1119 patients with a psychotic disorder, 1979 relatives and 586 healthy controls. Using linear regression, we tested >100 independent demographic, cognitive and clinical phenotypes for their association with QoL in patients. We then performed genome-wide association analyses of QoL and examined the association between polygenic risk scores for schizophrenia, major depressive disorder and subjective well-being and QoL.
Results
We found nine phenotypes to be significantly and independently associated with QoL in patients, the most significant ones being negative (β = −1.17; s.e. 0.05; P = 1 × 10–83; r2 = 38%), depressive (β = −1.07; s.e. 0.05; P = 2 × 10–79; r2 = 36%) and emotional distress (β = −0.09; s.e. 0.01; P = 4 × 10–59, r2 = 25%) symptoms. Schizophrenia and subjective well-being polygenic risk scores, using various P-value thresholds, were significantly and consistently associated with QoL (lowest association P-value = 6.8 × 10–6). Several sensitivity analyses confirmed the results.
Conclusions
Various clinical phenotypes of schizophrenia, as well as schizophrenia and subjective well-being polygenic risk scores, are associated with QoL in patients with schizophrenia and their relatives. These may be targeted by clinicians to more easily identify vulnerable patients with schizophrenia for further social and clinical interventions to improve their QoL. -
Sha, Z., Schijven, D., & Francks, C. (2021). Patterns of brain asymmetry associated with polygenic risks for autism and schizophrenia implicate language and executive functions but not brain masculinization. Molecular Psychiatry, 26(12), 7652-7660. doi:10.1038/s41380-021-01204-z.
Abstract
Autism spectrum disorder (ASD) and schizophrenia have been conceived as partly opposing disorders in terms of systemizing versus empathizing cognitive styles, with resemblances to male versus female average sex differences. Left-right asymmetry of the brain is an important aspect of its organization that shows average differences between the sexes, and can be altered in both ASD and schizophrenia. Here we mapped multivariate associations of polygenic risk scores for ASD and schizophrenia with asymmetries of regional cerebral cortical surface area, thickness and subcortical volume measures in 32,256 participants from the UK Biobank. Polygenic risks for the two disorders were positively correlated (r=0.08, p=7.13×10-50), and both were higher in females compared to males, consistent with biased participation against higher-risk males. Each polygenic risk score was associated with multivariate brain asymmetry after adjusting for sex, ASD r=0.03, p=2.17×10-9, schizophrenia r=0.04, p=2.61×10-11, but the multivariate patterns were mostly distinct for the two polygenic risks, and neither resembled average sex differences. Annotation based on meta-analyzed functional imaging data showed that both polygenic risks were associated with asymmetries of regions important for language and executive functions, consistent with behavioural associations that arose in phenome-wide association analysis. Overall, the results indicate that distinct patterns of subtly altered brain asymmetry may be functionally relevant manifestations of polygenic risks for ASD and schizophrenia, but do not support brain masculinization or feminization in their etiologies. -
Sha, Z., Pepe, A., Schijven, D., Carrion Castillo, A., Roe, J. M., Westerhausen, R., Joliot, M., Fisher, S. E., Crivello, F., & Francks, C. (2021). Handedness and its genetic influences are associated with structural asymmetries of the cerebral cortex in 31,864 individuals. Proceedings of the National Academy of Sciences of the United States of America, 118(47): e2113095118. doi:10.1073/pnas.2113095118.
Abstract
Roughly 10% of the human population is left-handed, and this rate is increased in some brain-related disorders. The neuroanatomical correlates of hand preference have remained equivocal. We resampled structural brain image data from 28,802 right-handers and 3,062 left-handers (UK Biobank population dataset) to a symmetrical surface template, and mapped asymmetries for each of 8,681 vertices across the cerebral cortex in each individual. Left-handers compared to right-handers showed average differences of surface area asymmetry within the fusiform cortex, the anterior insula, the anterior middle cingulate cortex, and the precentral cortex. Meta-analyzed functional imaging data implicated these regions in executive functions and language. Polygenic disposition to left-handedness was associated with two of these regional asymmetries, and 18 loci previously linked with left-handedness by genome-wide screening showed associations with one or more of these asymmetries. Implicated genes included six encoding microtubule-related proteins: TUBB, TUBA1B, TUBB3, TUBB4A, MAP2, and NME7—mutations in the latter can cause left to right reversal of the visceral organs. There were also two cortical regions where average thickness asymmetry was altered in left-handedness: on the postcentral gyrus and the inferior occipital cortex, functionally annotated with hand sensorimotor and visual roles. These cortical thickness asymmetries were not heritable. Heritable surface area asymmetries of language-related regions may link the etiologies of hand preference and language, whereas nonheritable asymmetries of sensorimotor cortex may manifest as consequences of hand preference. -
Sha, Z., Schijven, D., Carrion Castillo, A., Joliot, M., Mazoyer, B., Fisher, S. E., Crivello, F., & Francks, C. (2021). The genetic architecture of structural left–right asymmetry of the human brain. Nature Human Behaviour, 5, 1226-1236. doi:10.1038/s41562-021-01069-w.
Abstract
Left–right hemispheric asymmetry is an important aspect of healthy brain organization for many functions including language, and it can be altered in cognitive and psychiatric disorders. No mechanism has yet been identified for establishing the human brain’s left–right axis. We performed multivariate genome-wide association scanning of cortical regional surface area and thickness asymmetries, and subcortical volume asymmetries, using data from 32,256 participants from the UK Biobank. There were 21 significant loci associated with different aspects of brain asymmetry, with functional enrichment involving microtubule-related genes and embryonic brain expression. These findings are consistent with a known role of the cytoskeleton in left–right axis determination in other organs of invertebrates and frogs. Genetic variants associated with brain asymmetry overlapped with those associated with autism, educational attainment and schizophrenia. Comparably large datasets will likely be required in future studies, to replicate and further clarify the associations of microtubule-related genes with variation in brain asymmetry, behavioural and psychiatric traits. -
Stevelink, R., Luykx, J. J., Lin, B. D., Leu, C., Lal, D., Smith, A. W., Schijven, D., Carpay, J. A., Rademaker, K., Baldez, R., A., R., Devinsky, O., Braun, K. P. J., Jansen, F. E., Smit, D. J. A., Koeleman, B. P. C., International League Against Epilepsy Consortium on Complex Epilepsies, & Epi25 Collaborative (2021). Shared genetic basis between genetic generalized epilepsy and background electroencephalographic oscillations. Epilepsia, 62(7), 1518-1527. doi:10.1111/epi.16922.
Abstract
Abstract Objective Paroxysmal epileptiform abnormalities on electroencephalography (EEG) are the hallmark of epilepsies, but it is uncertain to what extent epilepsy and background EEG oscillations share neurobiological underpinnings. Here, we aimed to assess the genetic correlation between epilepsy and background EEG oscillations. Methods Confounding factors, including the heterogeneous etiology of epilepsies and medication effects, hamper studies on background brain activity in people with epilepsy. To overcome this limitation, we compared genetic data from a genome-wide association study (GWAS) on epilepsy (n = 12 803 people with epilepsy and 24 218 controls) with that from a GWAS on background EEG (n = 8425 subjects without epilepsy), in which background EEG oscillation power was quantified in four different frequency bands: alpha, beta, delta, and theta. We replicated our findings in an independent epilepsy replication dataset (n = 4851 people with epilepsy and 20 428 controls). To assess the genetic overlap between these phenotypes, we performed genetic correlation analyses using linkage disequilibrium score regression, polygenic risk scores, and Mendelian randomization analyses. Results Our analyses show strong genetic correlations of genetic generalized epilepsy (GGE) with background EEG oscillations, primarily in the beta frequency band. Furthermore, we show that subjects with higher beta and theta polygenic risk scores have a significantly higher risk of having generalized epilepsy. Mendelian randomization analyses suggest a causal effect of GGE genetic liability on beta oscillations. Significance Our results point to shared biological mechanisms underlying background EEG oscillations and the susceptibility for GGE, opening avenues to investigate the clinical utility of background EEG oscillations in the diagnostic workup of epilepsy.Additional information
supporting information -
Schijven, D., Stevelink, R., McCormack, M., van Rheenen, W., Luykx, J. J., Koeleman, B. P., Veldink, J. H., Project MinE ALS GWAS Consortium, & International League Against Epilepsy Consortium on Complex Epilepsies (2020). Analysis of shared common genetic risk between amyotrophic lateral sclerosis and epilepsy. Neurobiology of Aging, 92, 153.e1-153.e5. doi:10.1016/j.neurobiolaging.2020.04.011.
Abstract
Because hyper-excitability has been shown to be a shared pathophysiological mechanism, we used the latest and largest genome-wide studies in amyotrophic lateral sclerosis (n = 36,052) and epilepsy (n = 38,349) to determine genetic overlap between these conditions. First, we showed no significant genetic correlation, also when binned on minor allele frequency. Second, we confirmed the absence of polygenic overlap using genomic risk score analysis. Finally, we did not identify pleiotropic variants in meta-analyses of the 2 diseases. Our findings indicate that amyotrophic lateral sclerosis and epilepsy do not share common genetic risk, showing that hyper-excitability in both disorders has distinct origins.Additional information
1-s2.0-S0197458020301305-mmc1.docx -
Schijven, D., Veldink, J. H., & Luykx, J. J. (2020). Genetic cross-disorder analysis in psychiatry: from methodology to clinical utility. The British Journal of Psychiatry, 216(5), 246-249. doi:10.1192/bjp.2019.72.
Abstract
SummaryGenome-wide association studies have uncovered hundreds of loci associated with psychiatric disorders. Cross-disorder studies are among the prime ramifications of such research. Here, we discuss the methodology of the most widespread methods and their clinical utility with regard to diagnosis, prediction, disease aetiology and treatment in psychiatry.Declaration of interestNone. -
Schijven, D., Zinkstok, J. R., & Luykx, J. J. (2020). Van genetische bevindingen naar de klinische praktijk van de psychiater: Hoe genetica precisiepsychiatrie mogelijk kan maken. Tijdschrift voor Psychiatrie, 62(9), 776-783.
Files private
Request files -
Ter Hark, S. E., Jamain, S., Schijven, D., Lin, B. D., Bakker, M. K., Boland-Auge, A., Deleuze, J.-F., Troudet, R., Malhotra, A. K., Gülöksüz, S., Vinkers, C. H., Ebdrup, B. H., Kahn, R. S., Leboyer, M., & Luykx, J. J. (2020). A new genetic locus for antipsychotic-induced weight gain: A genome-wide study of first-episode psychosis patients using amisulpride (from the OPTiMiSE cohort). Journal of Psychopharmacology, 34(5), 524-531. doi:10.1177/0269881120907972.
Abstract
Background:Antipsychotic-induced weight gain is a common and debilitating side effect of antipsychotics. Although genome-wide association studies of antipsychotic-induced weight gain have been performed, few genome-wide loci have been discovered. Moreover, these genome-wide association studies have included a wide variety of antipsychotic compounds.Aims:We aim to gain more insight in the genomic loci affecting antipsychotic-induced weight gain. Given the variable pharmacological properties of antipsychotics, we hypothesized that targeting a single antipsychotic compound would provide new clues about genomic loci affecting antipsychotic-induced weight gain.Methods:All subjects included for this genome-wide association study (n=339) were first-episode schizophrenia spectrum disorder patients treated with amisulpride and were minimally medicated (defined as antipsychotic use <2?weeks in the previous year and/or <6?weeks lifetime). Weight gain was defined as the increase in body mass index from before until approximately 1 month after amisulpride treatment.Results:Our genome-wide association analyses for antipsychotic-induced weight gain yielded one genome-wide significant hit (rs78310016; ?=1.05; p=3.66 ? 10?08; n=206) in a locus not previously associated with antipsychotic-induced weight gain or body mass index. Minor allele carriers had an odds ratio of 3.98 (p=1.0 ? 10?03) for clinically meaningful antipsychotic-induced weight gain (?7% of baseline weight). In silico analysis elucidated a chromatin interaction with 3-Hydroxy-3-Methylglutaryl-CoA Synthase 1. In an attempt to replicate single-nucleotide polymorphisms previously associated with antipsychotic-induced weight gain, we found none were associated with amisulpride-induced weight gain.Conclusion:Our findings suggest the involvement of rs78310016 and possibly 3-Hydroxy-3-Methylglutaryl-CoA Synthase 1 in antipsychotic-induced weight gain. In line with the unique binding profile of this atypical antipsychotic, our findings furthermore hint that biological mechanisms underlying amisulpride-induced weight gain differ from antipsychotic-induced weight gain by other atypical antipsychotics.Additional information
Supplementary_Figures_and_Tables_Optimise_GWAS.pdf -
Comasco, E., Schijven, D., de Maeyer, H., Vrettou, M., Nylander, I., Sundström-Poromaa, I., & Olivier, J. D. A. (2019). Constitutive serotonin transporter reduction resembles maternal separation with regard to stress-related gene expression. ACS Chemical Neuroscience, 10, 3132-3142. doi:10.1021/acschemneuro.8b00595.
Abstract
Interactive effects between allelic variants of the serotonin transporter (5-HTT) promoter-linked polymorphic region (5-HTTLPR) and stressors on depression symptoms have been documented, as well as questioned, by meta-analyses. Translational models of constitutive 5-htt reduction and experimentally controlled stressors often led to inconsistent behavioral and molecular findings and often did not include females. The present study sought to investigate the effect of 5-htt genotype, maternal separation, and sex on the expression of stress-related candidate genes in the rat hippocampus and frontal cortex. The mRNA expression levels of Avp, Pomc, Crh, Crhbp, Crhr1, Bdnf, Ntrk2, Maoa, Maob, and Comt were assessed in the hippocampus and frontal cortex of 5-htt ± and 5-htt +/+ male and female adult rats exposed, or not, to daily maternal separation for 180 min during the first 2 postnatal weeks. Gene- and brain region-dependent, but sex-independent, interactions between 5-htt genotype and maternal separation were found. Gene expression levels were higher in 5-htt +/+ rats not exposed to maternal separation compared with the other experimental groups. Maternal separation and 5-htt +/− genotype did not yield additive effects on gene expression. Correlative relationships, mainly positive, were observed within, but not across, brain regions in all groups except in non-maternally separated 5-htt +/+ rats. Gene expression patterns in the hippocampus and frontal cortex of rats exposed to maternal separation resembled the ones observed in rats with reduced 5-htt expression regardless of sex. These results suggest that floor effects of 5-htt reduction and maternal separation might explain inconsistent findings in humans and rodents -
Nievergelt, C. M., Maihofer, A. X., Klengel, T., Atkinson, E. G., Chen, C.-Y., Choi, K. W., Coleman, J. R. I., Dalvie, S., Duncan, L. E., Gelernter, J., Levey, D. F., Logue, M. W., Polimanti, R., Provost, A. C., Ratanatharathorn, A., Stein, M. B., Torres, K., Aiello, A. E., Almli, L. M., Amstadter, A. B. and 159 moreNievergelt, C. M., Maihofer, A. X., Klengel, T., Atkinson, E. G., Chen, C.-Y., Choi, K. W., Coleman, J. R. I., Dalvie, S., Duncan, L. E., Gelernter, J., Levey, D. F., Logue, M. W., Polimanti, R., Provost, A. C., Ratanatharathorn, A., Stein, M. B., Torres, K., Aiello, A. E., Almli, L. M., Amstadter, A. B., Andersen, S. B., Andreassen, O. A., Arbisi, P. A., Ashley-Koch, A. E., Austin, S. B., Avdibegovic, E., Babić, D., Bækvad-Hansen, M., Baker, D. G., Beckham, J. C., Bierut, L. J., Bisson, J. I., Boks, M. P., Bolger, E. A., Børglum, A. D., Bradley, B., Brashear, M., Breen, G., Bryant, R. A., Bustamante, A. C., Bybjerg-Grauholm, J., Calabrese, J. R., Caldas- de- Almeida, J. M., Dale, A. M., Daly, M. J., Daskalakis, N. P., Deckert, J., Delahanty, D. L., Dennis, M. F., Disner, S. G., Domschke, K., Dzubur-Kulenovic, A., Erbes, C. R., Evans, A., Farrer, L. A., Feeny, N. C., Flory, J. D., Forbes, D., Franz, C. E., Galea, S., Garrett, M. E., Gelaye, B., Geuze, E., Gillespie, C., Uka, A. G., Gordon, S. D., Guffanti, G., Hammamieh, R., Harnal, S., Hauser, M. A., Heath, A. C., Hemmings, S. M. J., Hougaard, D. M., Jakovljevic, M., Jett, M., Johnson, E. O., Jones, I., Jovanovic, T., Qin, X.-J., Junglen, A. G., Karstoft, K.-I., Kaufman, M. L., Kessler, R. C., Khan, A., Kimbrel, N. A., King, A. P., Koen, N., Kranzler, H. R., Kremen, W. S., Lawford, B. R., Lebois, L. A. M., Lewis, C. E., Linnstaedt, S. D., Lori, A., Lugonja, B., Luykx, J. J., Lyons, M. J., Maples-Keller, J., Marmar, C., Martin, A. R., Martin, N. G., Maurer, D., Mavissakalian, M. R., McFarlane, A., McGlinchey, R. E., McLaughlin, K. A., McLean, S. A., McLeay, S., Mehta, D., Milberg, W. P., Miller, M. W., Morey, R. A., Morris, C. P., Mors, O., Mortensen, P. B., Neale, B. M., Nelson, E. C., Nordentoft, M., Norman, S. B., O’Donnell, M., Orcutt, H. K., Panizzon, M. S., Peters, E. S., Peterson, A. L., Peverill, M., Pietrzak, R. H., Polusny, M. A., Rice, J. P., Ripke, S., Risbrough, V. B., Roberts, A. L., Rothbaum, A. O., Rothbaum, B. O., Roy-Byrne, P., Ruggiero, K., Rung, A., Rutten, B. P. F., Saccone, N. L., Sanchez, S. E., Schijven, D., Seedat, S., Seligowski, A. V., Seng, J. S., Sheerin, C. M., Silove, D., Smith, A. K., Smoller, J. W., Sponheim, S. R., Stein, D. J., Stevens, J. S., Sumner, J. A., Teicher, M. H., Thompson, W. K., Trapido, E., Uddin, M., Ursano, R. J., van den Heuvel, L. L., Van Hooff, M., Vermetten, E., Vinkers, C. H., Voisey, J., Wang, Y., Wang, Z., Werge, T., Williams, M. A., Williamson, D. E., Winternitz, S., Wolf, C., Wolf, E. J., Wolff, J. D., Yehuda, R., Young, R. M., Young, K. A., Zhao, H., Zoellner, L. A., Liberzon, I., Ressler, K. J., Haas, M., & Koenen, K. C. (2019). International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nature Communications, 10(1): 4558. doi:10.1038/s41467-019-12576-w.
Abstract
The risk of posttraumatic stress disorder (PTSD) following trauma is heritable, but robust common variants have yet to be identified. In a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls we conduct a genome-wide association study of PTSD. We demonstrate SNP-based heritability estimates of 5–20%, varying by sex. Three genome-wide significant loci are identified, 2 in European and 1 in African-ancestry analyses. Analyses stratified by sex implicate 3 additional loci in men. Along with other novel genes and non-coding RNAs, a Parkinson’s disease gene involved in dopamine regulation, PARK2, is associated with PTSD. Finally, we demonstrate that polygenic risk for PTSD is significantly predictive of re-experiencing symptoms in the Million Veteran Program dataset, although specific loci did not replicate. These results demonstrate the role of genetic variation in the biology of risk for PTSD and highlight the necessity of conducting sex-stratified analyses and expanding GWAS beyond European ancestry populations.Additional information
Supplementary information -
Schijven, D., Geuze, E., Vinkers, C. H., Pulit, S. L., Schür, R. R., Malgaz, M., Bekema, E., Medic, J., van der Kust, K. E., Veldink, J. H., Boks, M. P., Vermetten, E., & Luykx, J. J. (2019). Multivariate genome-wide analysis of stress-related quantitative phenotypes. European Neuropsychopharmacology, 29(12), 1354-1364. doi:10.1016/j.euroneuro.2019.09.012.
Abstract
Exposure to traumatic stress increases the odds of developing a broad range of psychiatric conditions. Genetic studies targeting multiple stress-related quantitative phenotypes may shed light on mechanisms underlying vulnerability to psychopathology in the aftermath of stressful events. We applied a multivariate genome-wide association study (GWAS) to a unique military cohort (N = 583) in which we measured biochemical and behavioral phenotypes. The availability of pre- and post-deployment measurements allowed to capture changes in these phenotypes in response to stress. For genome-wide significant loci, we performed functional annotation, phenome-wide analysis and quasi-replication in PTSD case-control GWASs. We discovered one genetic variant reaching genome-wide significant association, surviving permutation and sensitivity analyses (rs10100651, p = 9.9 × 10−9). Functional annotation prioritized the genes INTS8 and TP53INP1. A phenome-wide scan revealed a significant association of these same genes with sleeping problems, hypertension and subjective well-being. Finally, a targeted lookup revealed nominally significant association of rs10100651 in a PTSD case-control GWAS in the UK Biobank (p = 0.02). We provide comprehensive evidence from multiple resources hinting at a role of the highlighted genetic variant in the human stress response, marking the power of multivariate genome-wide analysis of quantitative measures in stress research. Future genetic and functional studies can target this locus to further assess its effects on stress mediation and its possible role in psychopathology or resilience.Files private
Request files -
Schür, R. R., Schijven, D., Boks, M. P., Rutten, B. P., Stein, M. B., Veldink, J. H., Joëls, M., Geuze, E., Vermetten, E., Luykx, J. J., & Vinkers, C. H. (2019). The effect of genetic vulnerability and military deployment on the development of post-traumatic stress disorder and depressive symptoms. European Neuropsychopharmacology, 29(3), 405-415. doi:10.1016/j.euroneuro.2018.12.009.
Abstract
Exposure to trauma strongly increases the risk to develop stress-related psychopathology, such as post-traumatic stress disorder (PTSD) or major depressive disorder (MDD). In addition, liability to develop these moderately heritable disorders is partly determined by common genetic variance, which is starting to be uncovered by genome-wide association studies (GWASs). However, it is currently unknown to what extent genetic vulnerability and trauma interact. We investigated whether genetic risk based on summary statistics of large GWASs for PTSD and MDD predisposed individuals to report an increase in MDD and PTSD symptoms in a prospective military cohort (N = 516) at five time points after deployment to Afghanistan: one month, six months and one, two and five years. Linear regression was used to analyze the contribution of polygenic risk scores (PRSs, at multiple p-value thresholds) and their interaction with deployment-related trauma to the development of PTSD- and depression-related symptoms. We found no main effects of PRSs nor evidence for interactions with trauma on the development of PTSD or depressive symptoms at any of the time points in the five years after military deployment. Our results based on a unique long-term follow-up of a deployed military cohort suggest limited validity of current PTSD and MDD polygenic risk scores, albeit in the presence of minimal severe psychopathology in the target cohort. Even though the predictive value of PRSs will likely benefit from larger sample sizes in discovery and target datasets, progress will probably also depend on (endo)phenotype refinement that in turn will reduce etiological heterogeneity. -
Hebebrand, J., Peters, T., Schijven, D., Hebebrand, M., Grasemann, C., Winkler, T. W., Heid, I. M., Antel, J., Föcker, M., Tegeler, L., Brauner, L., Adan, R. A., Luykx, J. J., Correll, C. U., König, I. R., Hinney, A., & Libuda, L. (2018). The role of genetic variation of human metabolism for BMI, mental traits and mental disorders. Molecular Metabolism, 12, 1-11. doi:10.1016/j.molmet.2018.03.015.
Abstract
Objective
The aim was to assess whether loci associated with metabolic traits also have a significant role in BMI and mental traits/disorders
Methods
We first assessed the number of single nucleotide polymorphisms (SNPs) with genome-wide significance for human metabolism (NHGRI-EBI Catalog). These 516 SNPs (216 independent loci) were looked-up in genome-wide association studies for association with body mass index (BMI) and the mental traits/disorders educational attainment, neuroticism, schizophrenia, well-being, anxiety, depressive symptoms, major depressive disorder, autism-spectrum disorder, attention-deficit/hyperactivity disorder, Alzheimer's disease, bipolar disorder, aggressive behavior, and internalizing problems. A strict significance threshold of p < 6.92 × 10−6 was based on the correction for 516 SNPs and all 14 phenotypes, a second less conservative threshold (p < 9.69 × 10−5) on the correction for the 516 SNPs only.
Results
19 SNPs located in nine independent loci revealed p-values < 6.92 × 10−6; the less strict criterion was met by 41 SNPs in 24 independent loci. BMI and schizophrenia showed the most pronounced genetic overlap with human metabolism with three loci each meeting the strict significance threshold. Overall, genetic variation associated with estimated glomerular filtration rate showed up frequently; single metabolite SNPs were associated with more than one phenotype. Replications in independent samples were obtained for BMI and educational attainment.
Conclusions
Approximately 5–10% of the regions involved in the regulation of blood/urine metabolite levels seem to also play a role in BMI and mental traits/disorders and related phenotypes. If validated in metabolomic studies of the respective phenotypes, the associated blood/urine metabolites may enable novel preventive and therapeutic strategies. -
Schijven, D., Kofink, D., Tragante, V., Verkerke, M., Pulit, S. L., Kahn, R. S., Veldink, J. H., Vinkers, C. H., Boks, M. P., & Luykx, J. J. (2018). Comprehensive pathway analyses of schizophrenia risk loci point to dysfunctional postsynaptic signaling. Schizophrenia Research, 199, 195-202. doi:10.1016/j.schres.2018.03.032.
Abstract
Large-scale genome-wide association studies (GWAS) have implicated many low-penetrance loci in schizophrenia. However, its pathological mechanisms are poorly understood, which in turn hampers the development of novel pharmacological treatments. Pathway and gene set analyses carry the potential to generate hypotheses about disease mechanisms and have provided biological context to genome-wide data of schizophrenia. We aimed to examine which biological processes are likely candidates to underlie schizophrenia by integrating novel and powerful pathway analysis tools using data from the largest Psychiatric Genomics Consortium schizophrenia GWAS (N=79,845) and the most recent 2018 schizophrenia GWAS (N=105,318). By applying a primary unbiased analysis (Multi-marker Analysis of GenoMic Annotation; MAGMA) to weigh the role of biological processes from the Molecular Signatures Database (MSigDB), we identified enrichment of common variants in synaptic plasticity and neuron differentiation gene sets. We supported these findings using MAGMA, Meta-Analysis Gene-set Enrichment of variaNT Associations (MAGENTA) and Interval Enrichment Analysis (INRICH) on detailed synaptic signaling pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and found enrichment in mainly the dopaminergic and cholinergic synapses. Moreover, shared genes involved in these neurotransmitter systems had a large contribution to the observed enrichment, protein products of top genes in these pathways showed more direct and indirect interactions than expected by chance, and expression profiles of these genes were largely similar among brain tissues. In conclusion, we provide strong and consistent genetics and protein-interaction informed evidence for the role of postsynaptic signaling processes in schizophrenia, opening avenues for future translational and psychopharmacological studies. -
McLaughlin, R. L., Schijven, D., Van Rheenen, W., Van Eijk, K. R., O’Brien, M., Project MinE GWAS Consortium, Schizophrenia Working Group of the Psychiatric Genomics Consortium, Kahn, R. S., Ophoff, R. A., Goris, A., Bradley, D. G., Al-Chalabi, A., van den Berg, L. H., Luykx, J. J., Hardiman, O., & Veldink, J. H. (2017). Genetic correlation between amyotrophic lateral sclerosis and schizophrenia. Nature Communications, 8: 14774. doi:10.1038/ncomms14774.
Abstract
We have previously shown higher-than-expected rates of schizophrenia in relatives of patients with amyotrophic lateral sclerosis (ALS), suggesting an aetiological relationship between the diseases. Here, we investigate the genetic relationship between ALS and schizophrenia using genome-wide association study data from over 100,000 unique individuals. Using linkage disequilibrium score regression, we estimate the genetic correlation between ALS and schizophrenia to be 14.3% (7.05–21.6; P=1 × 10−4) with schizophrenia polygenic risk scores explaining up to 0.12% of the variance in ALS (P=8.4 × 10−7). A modest increase in comorbidity of ALS and schizophrenia is expected given these findings (odds ratio 1.08–1.26) but this would require very large studies to observe epidemiologically. We identify five potential novel ALS-associated loci using conditional false discovery rate analysis. It is likely that shared neurobiological mechanisms between these two disorders will engender novel hypotheses in future preclinical and clinical studies. -
Iliadis, S. I., Sylvén, S., Hellgren, C., Olivier, J. D., Schijven, D., Comasco, E., Chrousos, G. P., Sundström Poromaa, I., & Skalkidou, A. (2016). Mid-pregnancy corticotropin-releasing hormone levels in association with postpartum depressive symptoms. Depression and Anxiety, 33(11), 1023-1030. doi:10.1002/da.22529.
Abstract
Background Peripartum depression is a common cause of pregnancy- and postpartum-related morbidity. The production of corticotropin-releasing hormone (CRH) from the placenta alters the profile of hypothalamus–pituitary–adrenal axis hormones and may be associated with postpartum depression. The purpose of this study was to assess, in nondepressed pregnant women, the possible association between CRH levels in pregnancy and depressive symptoms postpartum. Methods A questionnaire containing demographic data and the Edinburgh Postnatal Depression Scale (EPDS) was filled in gestational weeks 17 and 32, and 6 week postpartum. Blood samples were collected in week 17 for assessment of CRH. A logistic regression model was constructed, using postpartum EPDS score as the dependent variable and log-transformed CRH levels as the independent variable. Confounding factors were included in the model. Subanalyses after exclusion of study subjects with preterm birth, newborns small for gestational age (SGA), and women on corticosteroids were performed. Results Five hundred thirty-five women without depressive symptoms during pregnancy were included. Logistic regression showed an association between high CRH levels in gestational week 17 and postpartum depressive symptoms, before and after controlling for several confounders (unadjusted OR = 1.11, 95% CI 1.01–1.22; adjusted OR = 1.13, 95% CI 1.02–1.26; per 0.1 unit increase in log CRH). Exclusion of women with preterm birth and newborns SGA as well as women who used inhalation corticosteroids during pregnancy did not alter the results. Conclusions This study suggests an association between high CRH levels in gestational week 17 and the development of postpartum depressive symptoms, among women without depressive symptoms during pregnancy. -
Ahlsson, F., Åkerud, H., Schijven, D., Olivier, J., & Sundström-Poromaa, I. (2015). Gene expression in placentas from nondiabetic women giving birth to large for gestational age infants. Reproductive Sciences, 22(10), 1281-1288. doi:10.1177/1933719115578928.
Abstract
Gestational diabetes, obesity, and excessive weight gain are known independent risk factors for the birth of a large for gestational age (LGA) infant. However, only 1 of the 10 infants born LGA is born by mothers with diabetes or obesity. Thus, the aim of the present study was to compare placental gene expression between healthy, nondiabetic mothers (n = 22) giving birth to LGA infants and body mass index-matched mothers (n = 24) giving birth to appropriate for gestational age infants. In the whole gene expression analysis, only 29 genes were found to be differently expressed in LGA placentas. Top upregulated genes included insulin-like growth factor binding protein 1, aminolevulinate δ synthase 2, and prolactin, whereas top downregulated genes comprised leptin, gametocyte-specific factor 1, and collagen type XVII α 1. Two enriched gene networks were identified, namely, (1) lipid metabolism, small molecule biochemistry, and organismal development and (2) cellular development, cellular growth, proliferation, and tumor morphology. -
Hannerfors, A.-K., Hellgren, C., Schijven, D., Iliadis, S. I., Comasco, E., Skalkidou, A., Olivier, J. D., & Sundström-Poromaa, I. (2015). Treatment with serotonin reuptake inhibitors during pregnancy is associated with elevated corticotropin-releasing hormone levels. Psychoneuroendocrinology, 58, 104-113. doi:10.1016/j.psyneuen.2015.04.009.
Abstract
Treatment with serotonin reuptake inhibitors (SSRI) has been associated with an increased risk of preterm birth, but causality remains unclear. While placental CRH production is correlated with gestational length and preterm birth, it has been difficult to establish if psychological stress or mental health problems are associated with increased CRH levels. This study compared second trimester CRH serum concentrations in pregnant women on SSRI treatment (n=207) with untreated depressed women (n=56) and controls (n=609). A secondary aim was to investigate the combined effect of SSRI treatment and CRH levels on gestational length and risk for preterm birth. Women on SSRI treatment had significantly higher second trimester CRH levels than controls, and untreated depressed women. CRH levels and SSRI treatment were independently associated with shorter gestational length. The combined effect of SSRI treatment and high CRH levels yielded the highest risk estimate for preterm birth. SSRI treatment during pregnancy is associated with increased CRH levels. However, the elevated risk for preterm birth in SSRI users appear not to be mediated by increased placental CRH production, instead CRH appear as an independent risk factor for shorter gestational length and preterm birth. -
Schijven, D., Sousa, V. C., Roelofs, J., Olivier, B., & Olivier, J. D. A. (2014). Serotonin 1A receptors and sexual behavior in a genetic model of depression. Pharmacology, Biochemistry and Behavior, 121, 82-87. doi:10.1016/j.pbb.2013.12.012.
Abstract
The Flinder Sensitive Line (FSL) is a rat strain that displays distinct behavioral and neurochemical features of major depression. Chronic selective serotonin reuptake inhibitors (SSRIs) are able to reverse these symptoms in FSL rats. It is well known that several abnormalities in the serotonergic system have been found in FSL rats, including increased 5-HT brain tissue levels and reduced 5-HT synthesis. SSRIs are known to exert (part of) their effects by desensitization of the 5-HT1A receptor and FSL rats appear to have lower 5-HT1A receptor densities compared with Flinder Resistant Line (FRL) rats. We therefore studied the sensitivity of this receptor on the sexual behavior performance in both FRL and FSL rats. First, basal sexual performance was studied after saline treatment followed by treatment of two different doses of the 5-HT1A receptor agonist ±8-OH-DPAT. Finally we measured the effect of a 5-HT1A receptor antagonist to check for specificity of the 5-HT1A receptor activation. Our results show that FSL rats have higher ejaculation frequencies compared with FRL rats which do not fit with a more depressive-like phenotype. Moreover FRL rats are more sensitive to effects of ±8-OH-DPAT upon EL and IF than FSL rats. The blunted response of FSL rats to the effects of ±8-OH-DPAT may be due to lower densities of 5-HT1A receptors.
Share this page