Publications

Displaying 1 - 10 of 10
  • Amelink, J., Postema, M., Kong, X., Schijven, D., Carrion Castillo, A., Soheili-Nezhad, S., Sha, Z., Molz, B., Joliot, M., Fisher, S. E., & Francks, C. (2024). Imaging genetics of language network functional connectivity reveals links with language-related abilities, dyslexia and handedness. Communications Biology, 7: 1209. doi:10.1038/s42003-024-06890-3.

    Abstract

    Language is supported by a distributed network of brain regions with a particular contribution from the left hemisphere. A multi-level understanding of this network requires studying the genetic architecture of its functional connectivity and hemispheric asymmetry. We used resting state functional imaging data from 29,681 participants from the UK Biobank to measure functional connectivity between 18 left-hemisphere regions implicated in multimodal sentence-level processing, as well as their homotopic regions in the right-hemisphere, and interhemispheric connections. Multivariate genome-wide association analysis of this total network, based on common genetic variants (with population frequencies above 1%), identified 14 loci associated with network functional connectivity. Three of these loci were also associated with hemispheric differences of intrahemispheric connectivity. Polygenic dispositions to lower language-related abilities, dyslexia and left-handedness were associated with generally reduced leftward asymmetry of functional connectivity, but with some trait- and connection-specific exceptions. Exome-wide association analysis based on rare, protein-altering variants (frequencies < 1%) suggested 7 additional genes. These findings shed new light on the genetic contributions to language network connectivity and its asymmetry based on both common and rare genetic variants, and reveal genetic links to language-related traits and hemispheric dominance for hand preference.
  • Kurth, F., Schijven, D., Van den Heuvel, O. A., Hoogman, M., Van Rooij, D., Stein, D. J., Buitelaar, J. K., Bölte, S., Auzias, G., Kushki, A., Venkatasubramanian, G., Rubia, K., Bollmann, S., Isaksson, J., Jaspers-Fayer, F., Marsh, R., Batistuzzo, M. C., Arnold, P. D., Bressan, R. A., Stewart, E. S. Kurth, F., Schijven, D., Van den Heuvel, O. A., Hoogman, M., Van Rooij, D., Stein, D. J., Buitelaar, J. K., Bölte, S., Auzias, G., Kushki, A., Venkatasubramanian, G., Rubia, K., Bollmann, S., Isaksson, J., Jaspers-Fayer, F., Marsh, R., Batistuzzo, M. C., Arnold, P. D., Bressan, R. A., Stewart, E. S., Gruner, P., Sorensen, L., Pan, P. M., Silk, T. J., Gur, R. C., Cubillo, A. I., Haavik, J., O'Gorman Tuura, R. L., Hartman, C. A., Calvo, R., McGrath, J., Calderoni, S., Jackowski, A., Chantiluke, K. C., Satterthwaite, T. D., Busatto, G. F., Nigg, J. T., Gur, R. E., Retico, A., Tosetti, M., Gallagher, L., Szeszko, P. R., Neufeld, J., Ortiz, A. E., Ghisleni, C., Lazaro, L., Hoekstra, P. J., Anagnostou, E., Hoekstra, L., Simpson, B., Plessen, J. K., Deruelle, C., Soreni, N., James, A., Narayanaswamy, J., Reddy, J. Y. C., Fitzgerald, J., Bellgrove, M. A., Salum, G. A., Janssen, J., Muratori, F., Vila, M., Garcia Giral, M., Ameis, S. H., Bosco, P., Lundin Remnélius, K., Huyser, C., Pariente, J. C., Jalbrzikowski, M., Rosa, P. G. P., O'Hearn, K. M., Ehrlich, S., Mollon, J., Zugman, A., Christakou, A., Arango, C., Fisher, S. E., Kong, X., Franke, B., Medland, S. E., Thomopoulos, S. I., Jahanshad, N., Glahn, D. C., Thompson, P. M., Francks, C., & Luders, E. (2024). Large-scale analysis of structural brain asymmetries during neurodevelopment: Age effects and sex differences in 4,265 children and adolescents. Human Brain Mapping, 45(11): e26754. doi:10.1002/hbm.26754.

    Abstract

    Only a small number of studies have assessed structural differences between the two hemispheres during childhood and adolescence. However, the existing findings lack consistency or are restricted to a particular brain region, a specific brain feature, or a relatively narrow age range. Here, we investigated associations between brain asymmetry and age as well as sex in one of the largest pediatric samples to date (n = 4265), aged 1–18 years, scanned at 69 sites participating in the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) consortium. Our study revealed that significant brain asymmetries already exist in childhood, but their magnitude and direction depend on the brain region examined and the morphometric measurement used (cortical volume or thickness, regional surface area, or subcortical volume). With respect to effects of age, some asymmetries became weaker over time while others became stronger; sometimes they even reversed direction. With respect to sex differences, the total number of regions exhibiting significant asymmetries was larger in females than in males, while the total number of measurements indicating significant asymmetries was larger in males (as we obtained more than one measurement per cortical region). The magnitude of the significant asymmetries was also greater in males. However, effect sizes for both age effects and sex differences were small. Taken together, these findings suggest that cerebral asymmetries are an inherent organizational pattern of the brain that manifests early in life. Overall, brain asymmetry appears to be relatively stable throughout childhood and adolescence, with some differential effects in males and females.
  • Schijven, D., Soheili-Nezhad, S., Fisher, S. E., & Francks, C. (2024). Exome-wide analysis implicates rare protein-altering variants in human handedness. Nature Communications, 15: 2632. doi:10.1038/s41467-024-46277-w.

    Abstract

    Handedness is a manifestation of brain hemispheric specialization. Left-handedness occurs at increased rates in neurodevelopmental disorders. Genome-wide association studies have identified common genetic effects on handedness or brain asymmetry, which mostly involve variants outside protein-coding regions and may affect gene expression. Implicated genes include several that encode tubulins (microtubule components) or microtubule-associated proteins. Here we examine whether left-handedness is also influenced by rare coding variants (frequencies ≤ 1%), using exome data from 38,043 left-handed and 313,271 right-handed individuals from the UK Biobank. The beta-tubulin gene TUBB4B shows exome-wide significant association, with a rate of rare coding variants 2.7 times higher in left-handers than right-handers. The TUBB4B variants are mostly heterozygous missense changes, but include two frameshifts found only in left-handers. Other TUBB4B variants have been linked to sensorineural and/or ciliopathic disorders, but not the variants found here. Among genes previously implicated in autism or schizophrenia by exome screening, DSCAM and FOXP1 show evidence for rare coding variant association with left-handedness. The exome-wide heritability of left-handedness due to rare coding variants was 0.91%. This study reveals a role for rare, protein-altering variants in left-handedness, providing further evidence for the involvement of microtubules and disorder-relevant genes.
  • Soheili-Nezhad, S., Schijven, D., Mars, R. B., Fisher, S. E., & Francks, C. (2024). Distinct impact modes of polygenic disposition to dyslexia in the adult brain. Science Advances, 10(51): eadq2754. doi:10.1126/sciadv.adq2754.

    Abstract

    Dyslexia is a common condition that impacts reading ability. Identifying affected brain networks has been hampered by limited sample sizes of imaging case-control studies. We focused instead on brain structural correlates of genetic disposition to dyslexia in large-scale population data. In over 30,000 adults (UK Biobank), higher polygenic disposition to dyslexia was associated with lower head and brain size, and especially reduced volume and/or altered fiber density in networks involved in motor control, language and vision. However, individual genetic variants disposing to dyslexia often had quite distinct patterns of association with brain structural features. Independent component analysis applied to brain-wide association maps for thousands of dyslexia-disposing genetic variants revealed multiple impact modes on the brain, that corresponded to anatomically distinct areas with their own genomic profiles of association. Polygenic scores for dyslexia-related cognitive and educational measures, as well as attention-deficit/hyperactivity disorder, showed similarities to dyslexia polygenic disposition in terms of brain-wide associations, with microstructure of the internal capsule consistently implicated. In contrast, lower volume of the primary motor cortex was only associated with higher dyslexia polygenic disposition among all traits. These findings robustly reveal heterogeneous neurobiological aspects of dyslexia genetic disposition, and whether they are shared or unique with respect to other genetically correlated traits.

    Additional information

    link to preprint
  • Comasco, E., Schijven, D., de Maeyer, H., Vrettou, M., Nylander, I., Sundström-Poromaa, I., & Olivier, J. D. A. (2019). Constitutive serotonin transporter reduction resembles maternal separation with regard to stress-related gene expression. ACS Chemical Neuroscience, 10, 3132-3142. doi:10.1021/acschemneuro.8b00595.

    Abstract

    Interactive effects between allelic variants of the serotonin transporter (5-HTT) promoter-linked polymorphic region (5-HTTLPR) and stressors on depression symptoms have been documented, as well as questioned, by meta-analyses. Translational models of constitutive 5-htt reduction and experimentally controlled stressors often led to inconsistent behavioral and molecular findings and often did not include females. The present study sought to investigate the effect of 5-htt genotype, maternal separation, and sex on the expression of stress-related candidate genes in the rat hippocampus and frontal cortex. The mRNA expression levels of Avp, Pomc, Crh, Crhbp, Crhr1, Bdnf, Ntrk2, Maoa, Maob, and Comt were assessed in the hippocampus and frontal cortex of 5-htt ± and 5-htt +/+ male and female adult rats exposed, or not, to daily maternal separation for 180 min during the first 2 postnatal weeks. Gene- and brain region-dependent, but sex-independent, interactions between 5-htt genotype and maternal separation were found. Gene expression levels were higher in 5-htt +/+ rats not exposed to maternal separation compared with the other experimental groups. Maternal separation and 5-htt +/− genotype did not yield additive effects on gene expression. Correlative relationships, mainly positive, were observed within, but not across, brain regions in all groups except in non-maternally separated 5-htt +/+ rats. Gene expression patterns in the hippocampus and frontal cortex of rats exposed to maternal separation resembled the ones observed in rats with reduced 5-htt expression regardless of sex. These results suggest that floor effects of 5-htt reduction and maternal separation might explain inconsistent findings in humans and rodents
  • Nievergelt, C. M., Maihofer, A. X., Klengel, T., Atkinson, E. G., Chen, C.-Y., Choi, K. W., Coleman, J. R. I., Dalvie, S., Duncan, L. E., Gelernter, J., Levey, D. F., Logue, M. W., Polimanti, R., Provost, A. C., Ratanatharathorn, A., Stein, M. B., Torres, K., Aiello, A. E., Almli, L. M., Amstadter, A. B. and 159 moreNievergelt, C. M., Maihofer, A. X., Klengel, T., Atkinson, E. G., Chen, C.-Y., Choi, K. W., Coleman, J. R. I., Dalvie, S., Duncan, L. E., Gelernter, J., Levey, D. F., Logue, M. W., Polimanti, R., Provost, A. C., Ratanatharathorn, A., Stein, M. B., Torres, K., Aiello, A. E., Almli, L. M., Amstadter, A. B., Andersen, S. B., Andreassen, O. A., Arbisi, P. A., Ashley-Koch, A. E., Austin, S. B., Avdibegovic, E., Babić, D., Bækvad-Hansen, M., Baker, D. G., Beckham, J. C., Bierut, L. J., Bisson, J. I., Boks, M. P., Bolger, E. A., Børglum, A. D., Bradley, B., Brashear, M., Breen, G., Bryant, R. A., Bustamante, A. C., Bybjerg-Grauholm, J., Calabrese, J. R., Caldas- de- Almeida, J. M., Dale, A. M., Daly, M. J., Daskalakis, N. P., Deckert, J., Delahanty, D. L., Dennis, M. F., Disner, S. G., Domschke, K., Dzubur-Kulenovic, A., Erbes, C. R., Evans, A., Farrer, L. A., Feeny, N. C., Flory, J. D., Forbes, D., Franz, C. E., Galea, S., Garrett, M. E., Gelaye, B., Geuze, E., Gillespie, C., Uka, A. G., Gordon, S. D., Guffanti, G., Hammamieh, R., Harnal, S., Hauser, M. A., Heath, A. C., Hemmings, S. M. J., Hougaard, D. M., Jakovljevic, M., Jett, M., Johnson, E. O., Jones, I., Jovanovic, T., Qin, X.-J., Junglen, A. G., Karstoft, K.-I., Kaufman, M. L., Kessler, R. C., Khan, A., Kimbrel, N. A., King, A. P., Koen, N., Kranzler, H. R., Kremen, W. S., Lawford, B. R., Lebois, L. A. M., Lewis, C. E., Linnstaedt, S. D., Lori, A., Lugonja, B., Luykx, J. J., Lyons, M. J., Maples-Keller, J., Marmar, C., Martin, A. R., Martin, N. G., Maurer, D., Mavissakalian, M. R., McFarlane, A., McGlinchey, R. E., McLaughlin, K. A., McLean, S. A., McLeay, S., Mehta, D., Milberg, W. P., Miller, M. W., Morey, R. A., Morris, C. P., Mors, O., Mortensen, P. B., Neale, B. M., Nelson, E. C., Nordentoft, M., Norman, S. B., O’Donnell, M., Orcutt, H. K., Panizzon, M. S., Peters, E. S., Peterson, A. L., Peverill, M., Pietrzak, R. H., Polusny, M. A., Rice, J. P., Ripke, S., Risbrough, V. B., Roberts, A. L., Rothbaum, A. O., Rothbaum, B. O., Roy-Byrne, P., Ruggiero, K., Rung, A., Rutten, B. P. F., Saccone, N. L., Sanchez, S. E., Schijven, D., Seedat, S., Seligowski, A. V., Seng, J. S., Sheerin, C. M., Silove, D., Smith, A. K., Smoller, J. W., Sponheim, S. R., Stein, D. J., Stevens, J. S., Sumner, J. A., Teicher, M. H., Thompson, W. K., Trapido, E., Uddin, M., Ursano, R. J., van den Heuvel, L. L., Van Hooff, M., Vermetten, E., Vinkers, C. H., Voisey, J., Wang, Y., Wang, Z., Werge, T., Williams, M. A., Williamson, D. E., Winternitz, S., Wolf, C., Wolf, E. J., Wolff, J. D., Yehuda, R., Young, R. M., Young, K. A., Zhao, H., Zoellner, L. A., Liberzon, I., Ressler, K. J., Haas, M., & Koenen, K. C. (2019). International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nature Communications, 10(1): 4558. doi:10.1038/s41467-019-12576-w.

    Abstract

    The risk of posttraumatic stress disorder (PTSD) following trauma is heritable, but robust common variants have yet to be identified. In a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls we conduct a genome-wide association study of PTSD. We demonstrate SNP-based heritability estimates of 5–20%, varying by sex. Three genome-wide significant loci are identified, 2 in European and 1 in African-ancestry analyses. Analyses stratified by sex implicate 3 additional loci in men. Along with other novel genes and non-coding RNAs, a Parkinson’s disease gene involved in dopamine regulation, PARK2, is associated with PTSD. Finally, we demonstrate that polygenic risk for PTSD is significantly predictive of re-experiencing symptoms in the Million Veteran Program dataset, although specific loci did not replicate. These results demonstrate the role of genetic variation in the biology of risk for PTSD and highlight the necessity of conducting sex-stratified analyses and expanding GWAS beyond European ancestry populations.

    Additional information

    Supplementary information
  • Schijven, D., Geuze, E., Vinkers, C. H., Pulit, S. L., Schür, R. R., Malgaz, M., Bekema, E., Medic, J., van der Kust, K. E., Veldink, J. H., Boks, M. P., Vermetten, E., & Luykx, J. J. (2019). Multivariate genome-wide analysis of stress-related quantitative phenotypes. European Neuropsychopharmacology, 29(12), 1354-1364. doi:10.1016/j.euroneuro.2019.09.012.

    Abstract

    Exposure to traumatic stress increases the odds of developing a broad range of psychiatric conditions. Genetic studies targeting multiple stress-related quantitative phenotypes may shed light on mechanisms underlying vulnerability to psychopathology in the aftermath of stressful events. We applied a multivariate genome-wide association study (GWAS) to a unique military cohort (N = 583) in which we measured biochemical and behavioral phenotypes. The availability of pre- and post-deployment measurements allowed to capture changes in these phenotypes in response to stress. For genome-wide significant loci, we performed functional annotation, phenome-wide analysis and quasi-replication in PTSD case-control GWASs. We discovered one genetic variant reaching genome-wide significant association, surviving permutation and sensitivity analyses (rs10100651, p = 9.9 × 10−9). Functional annotation prioritized the genes INTS8 and TP53INP1. A phenome-wide scan revealed a significant association of these same genes with sleeping problems, hypertension and subjective well-being. Finally, a targeted lookup revealed nominally significant association of rs10100651 in a PTSD case-control GWAS in the UK Biobank (p = 0.02). We provide comprehensive evidence from multiple resources hinting at a role of the highlighted genetic variant in the human stress response, marking the power of multivariate genome-wide analysis of quantitative measures in stress research. Future genetic and functional studies can target this locus to further assess its effects on stress mediation and its possible role in psychopathology or resilience.

    Files private

    Request files
  • Schür, R. R., Schijven, D., Boks, M. P., Rutten, B. P., Stein, M. B., Veldink, J. H., Joëls, M., Geuze, E., Vermetten, E., Luykx, J. J., & Vinkers, C. H. (2019). The effect of genetic vulnerability and military deployment on the development of post-traumatic stress disorder and depressive symptoms. European Neuropsychopharmacology, 29(3), 405-415. doi:10.1016/j.euroneuro.2018.12.009.

    Abstract

    Exposure to trauma strongly increases the risk to develop stress-related psychopathology, such as post-traumatic stress disorder (PTSD) or major depressive disorder (MDD). In addition, liability to develop these moderately heritable disorders is partly determined by common genetic variance, which is starting to be uncovered by genome-wide association studies (GWASs). However, it is currently unknown to what extent genetic vulnerability and trauma interact. We investigated whether genetic risk based on summary statistics of large GWASs for PTSD and MDD predisposed individuals to report an increase in MDD and PTSD symptoms in a prospective military cohort (N = 516) at five time points after deployment to Afghanistan: one month, six months and one, two and five years. Linear regression was used to analyze the contribution of polygenic risk scores (PRSs, at multiple p-value thresholds) and their interaction with deployment-related trauma to the development of PTSD- and depression-related symptoms. We found no main effects of PRSs nor evidence for interactions with trauma on the development of PTSD or depressive symptoms at any of the time points in the five years after military deployment. Our results based on a unique long-term follow-up of a deployed military cohort suggest limited validity of current PTSD and MDD polygenic risk scores, albeit in the presence of minimal severe psychopathology in the target cohort. Even though the predictive value of PRSs will likely benefit from larger sample sizes in discovery and target datasets, progress will probably also depend on (endo)phenotype refinement that in turn will reduce etiological heterogeneity.
  • Ahlsson, F., Åkerud, H., Schijven, D., Olivier, J., & Sundström-Poromaa, I. (2015). Gene expression in placentas from nondiabetic women giving birth to large for gestational age infants. Reproductive Sciences, 22(10), 1281-1288. doi:10.1177/1933719115578928.

    Abstract

    Gestational diabetes, obesity, and excessive weight gain are known independent risk factors for the birth of a large for gestational age (LGA) infant. However, only 1 of the 10 infants born LGA is born by mothers with diabetes or obesity. Thus, the aim of the present study was to compare placental gene expression between healthy, nondiabetic mothers (n = 22) giving birth to LGA infants and body mass index-matched mothers (n = 24) giving birth to appropriate for gestational age infants. In the whole gene expression analysis, only 29 genes were found to be differently expressed in LGA placentas. Top upregulated genes included insulin-like growth factor binding protein 1, aminolevulinate δ synthase 2, and prolactin, whereas top downregulated genes comprised leptin, gametocyte-specific factor 1, and collagen type XVII α 1. Two enriched gene networks were identified, namely, (1) lipid metabolism, small molecule biochemistry, and organismal development and (2) cellular development, cellular growth, proliferation, and tumor morphology.
  • Hannerfors, A.-K., Hellgren, C., Schijven, D., Iliadis, S. I., Comasco, E., Skalkidou, A., Olivier, J. D., & Sundström-Poromaa, I. (2015). Treatment with serotonin reuptake inhibitors during pregnancy is associated with elevated corticotropin-releasing hormone levels. Psychoneuroendocrinology, 58, 104-113. doi:10.1016/j.psyneuen.2015.04.009.

    Abstract

    Treatment with serotonin reuptake inhibitors (SSRI) has been associated with an increased risk of preterm birth, but causality remains unclear. While placental CRH production is correlated with gestational length and preterm birth, it has been difficult to establish if psychological stress or mental health problems are associated with increased CRH levels. This study compared second trimester CRH serum concentrations in pregnant women on SSRI treatment (n=207) with untreated depressed women (n=56) and controls (n=609). A secondary aim was to investigate the combined effect of SSRI treatment and CRH levels on gestational length and risk for preterm birth. Women on SSRI treatment had significantly higher second trimester CRH levels than controls, and untreated depressed women. CRH levels and SSRI treatment were independently associated with shorter gestational length. The combined effect of SSRI treatment and high CRH levels yielded the highest risk estimate for preterm birth. SSRI treatment during pregnancy is associated with increased CRH levels. However, the elevated risk for preterm birth in SSRI users appear not to be mediated by increased placental CRH production, instead CRH appear as an independent risk factor for shorter gestational length and preterm birth.

Share this page