Catecholaminergic modulation of semantic processing in sentence comprehension

Tan, Y., & Hagoort, P. (2020). Catecholaminergic modulation of semantic processing in sentence comprehension. Cerebral Cortex, 30(12), 6426-6443. doi:10.1093/cercor/bhaa204.
Catecholamine (CA) function has been widely implicated in cognitive functions that are tied to the prefrontal cortex and striatal areas. The present study investigated the effects of methylphenidate, which is a CA agonist, on the electroencephalogram (EEG) response related to semantic processing using a double-blind, placebo-controlled, randomized, crossover, within-subject design. Forty-eight healthy participants read semantically congruent or incongruent sentences after receiving 20-mg methylphenidate or a placebo while their brain activity was monitored with EEG. To probe whether the catecholaminergic modulation is task-dependent, in one condition participants had to focus on comprehending the sentences, while in the other condition, they only had to attend to the font size of the sentence. The results demonstrate that methylphenidate has a task-dependent effect on semantic processing. Compared to placebo, when semantic processing was task-irrelevant, methylphenidate enhanced the detection of semantic incongruence as indexed by a larger N400 amplitude in the incongruent sentences; when semantic processing was task-relevant, methylphenidate induced a larger N400 amplitude in the semantically congruent condition, which was followed by a larger late positive complex effect. These results suggest that CA-related neurotransmitters influence language processing, possibly through the projections between the prefrontal cortex and the striatum, which contain many CA receptors.
Publication type
Journal article
Publication date

Share this page