Displaying 1 - 9 of 9
-
Bai, F., Meyer, A. S., & Martin, A. E. (2022). Neural dynamics differentially encode phrases and sentences during spoken language comprehension. PLoS Biology, 20(7): e3001713. doi:10.1371/journal.pbio.3001713.
Abstract
Human language stands out in the natural world as a biological signal that uses a structured system to combine the meanings of small linguistic units (e.g., words) into larger constituents (e.g., phrases and sentences). However, the physical dynamics of speech (or sign) do not stand in a one-to-one relationship with the meanings listeners perceive. Instead, listeners infer meaning based on their knowledge of the language. The neural readouts of the perceptual and cognitive processes underlying these inferences are still poorly understood. In the present study, we used scalp electroencephalography (EEG) to compare the neural response to phrases (e.g., the red vase) and sentences (e.g., the vase is red), which were close in semantic meaning and had been synthesized to be physically indistinguishable. Differences in structure were well captured in the reorganization of neural phase responses in delta (approximately <2 Hz) and theta bands (approximately 2 to 7 Hz),and in power and power connectivity changes in the alpha band (approximately 7.5 to 13.5 Hz). Consistent with predictions from a computational model, sentences showed more power, more power connectivity, and more phase synchronization than phrases did. Theta–gamma phase–amplitude coupling occurred, but did not differ between the syntactic structures. Spectral–temporal response function (STRF) modeling revealed different encoding states for phrases and sentences, over and above the acoustically driven neural response. Our findings provide a comprehensive description of how the brain encodes and separates linguistic structures in the dynamics of neural responses. They imply that phase synchronization and strength of connectivity are readouts for the constituent structure of language. The results provide a novel basis for future neurophysiological research on linguistic structure representation in the brain, and, together with our simulations, support time-based binding as a mechanism of structure encoding in neural dynamics. -
Coopmans, C. W., De Hoop, H., Kaushik, K., Hagoort, P., & Martin, A. E. (2022). Hierarchy in language interpretation: Evidence from behavioural experiments and computational modelling. Language, Cognition and Neuroscience, 37(4), 420-439. doi:10.1080/23273798.2021.1980595.
Abstract
It has long been recognised that phrases and sentences are organised hierarchically, but many computational models of language treat them as sequences of words without computing constituent structure. Against this background, we conducted two experiments which showed that participants interpret ambiguous noun phrases, such as second blue ball, in terms of their abstract hierarchical structure rather than their linear surface order. When a neural network model was tested on this task, it could simulate such “hierarchical” behaviour. However, when we changed the training data such that they were not entirely unambiguous anymore, the model stopped generalising in a human-like way. It did not systematically generalise to novel items, and when it was trained on ambiguous trials, it strongly favoured the linear interpretation. We argue that these models should be endowed with a bias to make generalisations over hierarchical structure in order to be cognitively adequate models of human language. -
Coopmans, C. W., De Hoop, H., Hagoort, P., & Martin, A. E. (2022). Effects of structure and meaning on cortical tracking of linguistic units in naturalistic speech. Neurobiology of Language, 3(3), 386-412. doi:10.1162/nol_a_00070.
Abstract
Recent research has established that cortical activity “tracks” the presentation rate of syntactic phrases in continuous speech, even though phrases are abstract units that do not have direct correlates in the acoustic signal. We investigated whether cortical tracking of phrase structures is modulated by the extent to which these structures compositionally determine meaning. To this end, we recorded electroencephalography (EEG) of 38 native speakers who listened to naturally spoken Dutch stimuli in different conditions, which parametrically modulated the degree to which syntactic structure and lexical semantics determine sentence meaning. Tracking was quantified through mutual information between the EEG data and either the speech envelopes or abstract annotations of syntax, all of which were filtered in the frequency band corresponding to the presentation rate of phrases (1.1–2.1 Hz). Overall, these mutual information analyses showed stronger tracking of phrases in regular sentences than in stimuli whose lexical-syntactic content is reduced, but no consistent differences in tracking between sentences and stimuli that contain a combination of syntactic structure and lexical content. While there were no effects of compositional meaning on the degree of phrase-structure tracking, analyses of event-related potentials elicited by sentence-final words did reveal meaning-induced differences between conditions. Our findings suggest that cortical tracking of structure in sentences indexes the internal generation of this structure, a process that is modulated by the properties of its input, but not by the compositional interpretation of its output.Additional information
supplementary information -
Doumas, L. A. A., Puebla, G., Martin, A. E., & Hummel, J. E. (2022). A theory of relation learning and cross-domain generalization. Psychological Review, 129(5), 999-1041. doi:10.1037/rev0000346.
Abstract
People readily generalize knowledge to novel domains and stimuli. We present a theory, instantiated in a computational model, based on the idea that cross-domain generalization in humans is a case of analogical inference over structured (i.e., symbolic) relational representations. The model is an extension of the Learning and Inference with Schemas and Analogy (LISA; Hummel & Holyoak, 1997, 2003) and Discovery of Relations by Analogy (DORA; Doumas et al., 2008) models of relational inference and learning. The resulting model learns both the content and format (i.e., structure) of relational representations from nonrelational inputs without supervision, when augmented with the capacity for reinforcement learning it leverages these representations to learn about individual domains, and then generalizes to new domains on the first exposure (i.e., zero-shot learning) via analogical inference. We demonstrate the capacity of the model to learn structured relational representations from a variety of simple visual stimuli, and to perform cross-domain generalization between video games (Breakout and Pong) and between several psychological tasks. We demonstrate that the model’s trajectory closely mirrors the trajectory of children as they learn about relations, accounting for phenomena from the literature on the development of children’s reasoning and analogy making. The model’s ability to generalize between domains demonstrates the flexibility afforded by representing domains in terms of their underlying relational structure, rather than simply in terms of the statistical relations between their inputs and outputs. -
Ten Oever, S., Carta, S., Kaufeld, G., & Martin, A. E. (2022). Neural tracking of phrases in spoken language comprehension is automatic and task-dependent. eLife, 11: e77468. doi:10.7554/eLife.77468.
Abstract
Linguistic phrases are tracked in sentences even though there is no one-to-one acoustic phrase marker in the physical signal. This phenomenon suggests an automatic tracking of abstract linguistic structure that is endogenously generated by the brain. However, all studies investigating linguistic tracking compare conditions where either relevant information at linguistic timescales is available, or where this information is absent altogether (e.g., sentences versus word lists during passive listening). It is therefore unclear whether tracking at phrasal timescales is related to the content of language, or rather, results as a consequence of attending to the timescales that happen to match behaviourally relevant information. To investigate this question, we presented participants with sentences and word lists while recording their brain activity with magnetoencephalography (MEG). Participants performed passive, syllable, word, and word-combination tasks corresponding to attending to four different rates: one they would naturally attend to, syllable-rates, word-rates, and phrasal-rates, respectively. We replicated overall findings of stronger phrasal-rate tracking measured with mutual information for sentences compared to word lists across the classical language network. However, in the inferior frontal gyrus (IFG) we found a task effect suggesting stronger phrasal-rate tracking during the word-combination task independent of the presence of linguistic structure, as well as stronger delta-band connectivity during this task. These results suggest that extracting linguistic information at phrasal rates occurs automatically with or without the presence of an additional task, but also that IFG might be important for temporal integration across various perceptual domains. -
Ten Oever, S., Kaushik, K., & Martin, A. E. (2022). Inferring the nature of linguistic computations in the brain. PLoS Computational Biology, 18(7): e1010269. doi:10.1371/journal.pcbi.1010269.
Abstract
Sentences contain structure that determines their meaning beyond that of individual words. An influential study by Ding and colleagues (2016) used frequency tagging of phrases and sentences to show that the human brain is sensitive to structure by finding peaks of neural power at the rate at which structures were presented. Since then, there has been a rich debate on how to best explain this pattern of results with profound impact on the language sciences. Models that use hierarchical structure building, as well as models based on associative sequence processing, can predict the neural response, creating an inferential impasse as to which class of models explains the nature of the linguistic computations reflected in the neural readout. In the current manuscript, we discuss pitfalls and common fallacies seen in the conclusions drawn in the literature illustrated by various simulations. We conclude that inferring the neural operations of sentence processing based on these neural data, and any like it, alone, is insufficient. We discuss how to best evaluate models and how to approach the modeling of neural readouts to sentence processing in a manner that remains faithful to cognitive, neural, and linguistic principles. -
Martin, A. E., Nieuwland, M. S., & Carrieras, M. (2014). Agreement attraction during comprehension of grammatical sentences: ERP evidence from ellipsis. Brain and Language, 135, 42-51. doi:10.1016/j.bandl.2014.05.001.
Abstract
Successful dependency resolution during language comprehension relies on accessing certain representations in memory, and not others. We recently reported event-related potential (ERP) evidence that syntactically unavailable, intervening attractor-nouns interfered during comprehension of Spanish noun-phrase ellipsis (the determiner otra/otro): grammatically correct determiners that mismatched the gender of attractor-nouns elicited a sustained negativity as also observed for incorrect determiners (Martin, Nieuwland, & Carreiras, 2012). The current study sought to extend this novel finding in sentences containing object-extracted relative clauses, where the antecedent may be less prominent. Whereas correct determiners that matched the gender of attractor-nouns now elicited an early anterior negativity as also observed for mismatching determiners, the previously reported interaction pattern was replicated in P600 responses to subsequent words. Our results suggest that structural and gender information is simultaneously taken into account, providing further evidence for retrieval interference during comprehension of grammatical sentences. -
Ashby, J., & Martin, A. E. (2008). Prosodic phonological representations early in visual word recognition. Journal of Experimental Psychology: Human Perception and Performance, 34(1), 224-236. doi:10.1037/0096-1523.34.1.224.
Abstract
Two experiments examined the nature of the phonological representations used during visual word recognition. We tested whether a minimality constraint (R. Frost, 1998) limits the complexity of early representations to a simple string of phonemes. Alternatively, readers might activate elaborated representations that include prosodic syllable information before lexical access. In a modified lexical decision task (Experiment 1), words were preceded by parafoveal previews that were congruent with a target's initial syllable as well as previews that contained 1 letter more or less than the initial syllable. Lexical decision times were faster in the syllable congruent conditions than in the incongruent conditions. In Experiment 2, we recorded brain electrical potentials (electroencephalograms) during single word reading in a masked priming paradigm. The event-related potential waveform elicited in the syllable congruent condition was more positive 250-350 ms posttarget compared with the waveform elicited in the syllable incongruent condition. In combination, these experiments demonstrate that readers process prosodic syllable information early in visual word recognition in English. They offer further evidence that skilled readers routinely activate elaborated, speechlike phonological representations during silent reading. (PsycINFO Database Record (c) 2016 APA, all rights reserved) -
Martin, A. E., & McElree, B. (2008). A content-addressable pointer mechanism underlies comprehension of verb-phrase ellipsis. Journal of Memory and Language, 58(3), 879-906. doi:10.1016/j.jml.2007.06.010.
Abstract
Interpreting a verb-phrase ellipsis (VP ellipsis) requires accessing an antecedent in memory, and then integrating a representation of this antecedent into the local context. We investigated the online interpretation of VP ellipsis in an eye-tracking experiment and four speed–accuracy tradeoff experiments. To investigate whether the antecedent for a VP ellipsis is accessed with a search or direct-access retrieval process, Experiments 1 and 2 measured the effect of the distance between an ellipsis and its antecedent on the speed and accuracy of comprehension. Accuracy was lower with longer distances, indicating that interpolated material reduced the quality of retrieved information about the antecedent. However, contra a search process, distance did not affect the speed of interpreting ellipsis. This pattern suggests that antecedent representations are content-addressable and retrieved with a direct-access process. To determine whether interpreting ellipsis involves copying antecedent information into the ellipsis site, Experiments 3–5 manipulated the length and complexity of the antecedent. Some types of antecedent complexity lowered accuracy, notably, the number of discourse entities in the antecedent. However, neither antecedent length nor complexity affected the speed of interpreting the ellipsis. This pattern is inconsistent with a copy operation, and it suggests that ellipsis interpretation may involve a pointer to extant structures in memory.
Share this page