Displaying 1 - 4 of 4
  • Dediu, D., & Moisik, S. (2016). Defining and counting phonological classes in cross-linguistic segment databases. In N. Calzolari, K. Choukri, T. Declerck, S. Goggi, M. Grobelnik, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, & S. Piperidis (Eds.), Proceedings of LREC 2016: 10th International Conference on Language Resources and Evaluation (pp. 1955-1962). Paris: European Language Resources Association (ELRA).

    Abstract

    Recently, there has been an explosion in the availability of large, good-quality cross-linguistic databases such as WALS (Dryer & Haspelmath, 2013), Glottolog (Hammarstrom et al., 2015) and Phoible (Moran & McCloy, 2014). Databases such as Phoible contain the actual segments used by various languages as they are given in the primary language descriptions. However, this segment-level representation cannot be used directly for analyses that require generalizations over classes of segments that share theoretically interesting features. Here we present a method and the associated R (R Core Team, 2014) code that allows the exible denition of such meaningful classes and that can identify the sets of segments falling into such a class for any language inventory. The method and its results are important for those interested in exploring cross-linguistic patterns of phonetic and phonological diversity and their relationship to extra-linguistic factors and processes such as climate, economics, history or human genetics.
  • Dediu, D., & Moisik, S. R. (2016). Anatomical biasing of click learning and production: An MRI and 3d palate imaging study. In S. G. Roberts, C. Cuskley, L. McCrohon, L. Barceló-Coblijn, O. Feher, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 11th International Conference (EVOLANG11). Retrieved from http://evolang.org/neworleans/papers/57.html.

    Abstract

    The current paper presents results for data on click learning obtained from a larger imaging study (using MRI and 3D intraoral scanning) designed to quantify and characterize intra- and inter-population variation of vocal tract structures and the relation of this to speech production. The aim of the click study was to ascertain whether and to what extent vocal tract morphology influences (1) the ability to learn to produce clicks and (2) the productions of those that successfully learn to produce these sounds. The results indicate that the presence of an alveolar ridge certainly does not prevent an individual from learning to produce click sounds (1). However, the subtle details of how clicks are produced may indeed be driven by palate shape (2).
  • Janssen, R., Winter, B., Dediu, D., Moisik, S. R., & Roberts, S. G. (2016). Nonlinear biases in articulation constrain the design space of language. In S. G. Roberts, C. Cuskley, L. McCrohon, L. Barceló-Coblijn, O. Feher, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 11th International Conference (EVOLANG11). Retrieved from http://evolang.org/neworleans/papers/86.html.

    Abstract

    In Iterated Learning (IL) experiments, a participant’s learned output serves as the next participant’s learning input (Kirby et al., 2014). IL can be used to model cultural transmission and has indicated that weak biases can be amplified through repeated cultural transmission (Kirby et al., 2007). So, for example, structural language properties can emerge over time because languages come to reflect the cognitive constraints in the individuals that learn and produce the language. Similarly, we propose that languages may also reflect certain anatomical biases. Do sound systems adapt to the affordances of the articulation space induced by the vocal tract?
    The human vocal tract has inherent nonlinearities which might derive from acoustics and aerodynamics (cf. quantal theory, see Stevens, 1989) or biomechanics (cf. Gick & Moisik, 2015). For instance, moving the tongue anteriorly along the hard palate to produce a fricative does not result in large changes in acoustics in most cases, but for a small range there is an abrupt change from a perceived palato-alveolar [ʃ] to alveolar [s] sound (Perkell, 2012). Nonlinearities such as these might bias all human speakers to converge on a very limited set of phonetic categories, and might even be a basis for combinatoriality or phonemic ‘universals’.
    While IL typically uses discrete symbols, Verhoef et al. (2014) have used slide whistles to produce a continuous signal. We conducted an IL experiment with human subjects who communicated using a digital slide whistle for which the degree of nonlinearity is controlled. A single parameter (α) changes the mapping from slide whistle position (the ‘articulator’) to the acoustics. With α=0, the position of the slide whistle maps Bark-linearly to the acoustics. As α approaches 1, the mapping gets more double-sigmoidal, creating three plateaus where large ranges of positions map to similar frequencies. In more abstract terms, α represents the strength of a nonlinear (anatomical) bias in the vocal tract.
    Six chains (138 participants) of dyads were tested, each chain with a different, fixed α. Participants had to communicate four meanings by producing a continuous signal using the slide-whistle in a ‘director-matcher’ game, alternating roles (cf. Garrod et al., 2007).
    Results show that for high αs, subjects quickly converged on the plateaus. This quick convergence is indicative of a strong bias, repelling subjects away from unstable regions already within-subject. Furthermore, high αs lead to the emergence of signals that oscillate between two (out of three) plateaus. Because the sigmoidal spaces are spatially constrained, participants increasingly used the sequential/temporal dimension. As a result of this, the average duration of signals with high α was ~100ms longer than with low α. These oscillations could be an expression of a basis for phonemic combinatoriality.
    We have shown that it is possible to manipulate the magnitude of an articulator-induced non-linear bias in a slide whistle IL framework. The results suggest that anatomical biases might indeed constrain the design space of language. In particular, the signaling systems in our study quickly converged (within-subject) on the use of stable regions. While these conclusions were drawn from experiments using slide whistles with a relatively strong bias, weaker biases could possibly be amplified over time by repeated cultural transmission, and likely lead to similar outcomes.
  • Janssen, R., Dediu, D., & Moisik, S. R. (2016). Simple agents are able to replicate speech sounds using 3d vocal tract model. In S. G. Roberts, C. Cuskley, L. McCrohon, L. Barceló-Coblijn, O. Feher, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 11th International Conference (EVOLANG11). Retrieved from http://evolang.org/neworleans/papers/97.html.

    Abstract

    Many factors have been proposed to explain why groups of people use different speech sounds in their language. These range from cultural, cognitive, environmental (e.g., Everett, et al., 2015) to anatomical (e.g., vocal tract (VT) morphology). How could such anatomical properties have led to the similarities and differences in speech sound distributions between human languages?

    It is known that hard palate profile variation can induce different articulatory strategies in speakers (e.g., Brunner et al., 2009). That is, different hard palate profiles might induce a kind of bias on speech sound production, easing some types of sounds while impeding others. With a population of speakers (with a proportion of individuals) that share certain anatomical properties, even subtle VT biases might become expressed at a population-level (through e.g., bias amplification, Kirby et al., 2007). However, before we look into population-level effects, we should first look at within-individual anatomical factors. For that, we have developed a computer-simulated analogue for a human speaker: an agent. Our agent is designed to replicate speech sounds using a production and cognition module in a computationally tractable manner.

    Previous agent models have often used more abstract (e.g., symbolic) signals. (e.g., Kirby et al., 2007). We have equipped our agent with a three-dimensional model of the VT (the production module, based on Birkholz, 2005) to which we made numerous adjustments. Specifically, we used a 4th-order Bezier curve that is able to capture hard palate variation on the mid-sagittal plane (XXX, 2015). Using an evolutionary algorithm, we were able to fit the model to human hard palate MRI tracings, yielding high accuracy fits and using as little as two parameters. Finally, we show that the samples map well-dispersed to the parameter-space, demonstrating that the model cannot generate unrealistic profiles. We can thus use this procedure to import palate measurements into our agent’s production module to investigate the effects on acoustics. We can also exaggerate/introduce novel biases.

    Our agent is able to control the VT model using the cognition module.

    Previous research has focused on detailed neurocomputation (e.g., Kröger et al., 2014) that highlights e.g., neurobiological principles or speech recognition performance. However, the brain is not the focus of our current study. Furthermore, present-day computing throughput likely does not allow for large-scale deployment of these architectures, as required by the population model we are developing. Thus, the question whether a very simple cognition module is able to replicate sounds in a computationally tractable manner, and even generalize over novel stimuli, is one worthy of attention in its own right.

    Our agent’s cognition module is based on running an evolutionary algorithm on a large population of feed-forward neural networks (NNs). As such, (anatomical) bias strength can be thought of as an attractor basin area within the parameter-space the agent has to explore. The NN we used consists of a triple-layered (fully-connected), directed graph. The input layer (three neurons) receives the formants frequencies of a target-sound. The output layer (12 neurons) projects to the articulators in the production module. A hidden layer (seven neurons) enables the network to deal with nonlinear dependencies. The Euclidean distance (first three formants) between target and replication is used as fitness measure. Results show that sound replication is indeed possible, with Euclidean distance quickly approaching a close-to-zero asymptote.

    Statistical analysis should reveal if the agent can also: a) Generalize: Can it replicate sounds not exposed to during learning? b) Replicate consistently: Do different, isolated agents always converge on the same sounds? c) Deal with consolidation: Can it still learn new sounds after an extended learning phase (‘infancy’) has been terminated? Finally, a comparison with more complex models will be used to demonstrate robustness.

Share this page