Andrea E. Martin

Publications

Displaying 1 - 12 of 12
  • Coopmans, C. W., Mai, A., Slaats, S., Weissbart, H., & Martin, A. E. (2023). What oscillations can do for syntax depends on your theory of structure building. Nature Reviews Neuroscience, 24, 723. doi:10.1038/s41583-023-00734-5.
  • Coopmans, C. W., Kaushik, K., & Martin, A. E. (2023). Hierarchical structure in language and action: A formal comparison. Psychological Review, 130(4), 935-952. doi:10.1037/rev0000429.

    Abstract

    Since the cognitive revolution, language and action have been compared as cognitive systems, with cross-domain convergent views recently gaining renewed interest in biology, neuroscience, and cognitive science. Language and action are both combinatorial systems whose mode of combination has been argued to be hierarchical, combining elements into constituents of increasingly larger size. This structural similarity has led to the suggestion that they rely on shared cognitive and neural resources. In this article, we compare the conceptual and formal properties of hierarchy in language and action using set theory. We show that the strong compositionality of language requires a particular formalism, a magma, to describe the algebraic structure corresponding to the set of hierarchical structures underlying sentences. When this formalism is applied to actions, it appears to be both too strong and too weak. To overcome these limitations, which are related to the weak compositionality and sequential nature of action structures, we formalize the algebraic structure corresponding to the set of actions as a trace monoid. We aim to capture the different system properties of language and action in terms of the distinction between hierarchical sets and hierarchical sequences and discuss the implications for the way both systems could be represented in the brain.
  • Guest, O., & Martin, A. E. (2023). On logical inference over brains, behaviour, and artificial neural networks. Computational Brain & Behavior, 6, 213-227. doi:10.1007/s42113-022-00166-x.

    Abstract

    In the cognitive, computational, and neuro-sciences, practitioners often reason about what computational models represent or learn, as well as what algorithm is instantiated. The putative goal of such reasoning is to generalize claims about the model in question, to claims about the mind and brain, and the neurocognitive capacities of those systems. Such inference is often based on a model’s performance on a task, and whether that performance approximates human behavior or brain activity. Here we demonstrate how such argumentation problematizes the relationship between models and their targets; we place emphasis on artificial neural networks (ANNs), though any theory-brain relationship that falls into the same schema of reasoning is at risk. In this paper, we model inferences from ANNs to brains and back within a formal framework — metatheoretical calculus — in order to initiate a dialogue on both how models are broadly understood and used, and on how to best formally characterize them and their functions. To these ends, we express claims from the published record about models’ successes and failures in first-order logic. Our proposed formalization describes the decision-making processes enacted by scientists to adjudicate over theories. We demonstrate that formalizing the argumentation in the literature can uncover potential deep issues about how theory is related to phenomena. We discuss what this means broadly for research in cognitive science, neuroscience, and psychology; what it means for models when they lose the ability to mediate between theory and data in a meaningful way; and what this means for the metatheoretical calculus our fields deploy when performing high-level scientific inference.
  • Slaats, S., Weissbart, H., Schoffelen, J.-M., Meyer, A. S., & Martin, A. E. (2023). Delta-band neural responses to individual words are modulated by sentence processing. The Journal of Neuroscience, 43(26), 4867-4883. doi:10.1523/JNEUROSCI.0964-22.2023.

    Abstract

    To understand language, we need to recognize words and combine them into phrases and sentences. During this process, responses to the words themselves are changed. In a step towards understanding how the brain builds sentence structure, the present study concerns the neural readout of this adaptation. We ask whether low-frequency neural readouts associated with words change as a function of being in a sentence. To this end, we analyzed an MEG dataset by Schoffelen et al. (2019) of 102 human participants (51 women) listening to sentences and word lists, the latter lacking any syntactic structure and combinatorial meaning. Using temporal response functions and a cumulative model-fitting approach, we disentangled delta- and theta-band responses to lexical information (word frequency), from responses to sensory- and distributional variables. The results suggest that delta-band responses to words are affected by sentence context in time and space, over and above entropy and surprisal. In both conditions, the word frequency response spanned left temporal and posterior frontal areas; however, the response appeared later in word lists than in sentences. In addition, sentence context determined whether inferior frontal areas were responsive to lexical information. In the theta band, the amplitude was larger in the word list condition around 100 milliseconds in right frontal areas. We conclude that low-frequency responses to words are changed by sentential context. The results of this study speak to how the neural representation of words is affected by structural context, and as such provide insight into how the brain instantiates compositionality in language.
  • Tezcan, F., Weissbart, H., & Martin, A. E. (2023). A tradeoff between acoustic and linguistic feature encoding in spoken language comprehension. eLife, 12: e82386. doi:10.7554/eLife.82386.

    Abstract

    When we comprehend language from speech, the phase of the neural response aligns with particular features of the speech input, resulting in a phenomenon referred to as neural tracking. In recent years, a large body of work has demonstrated the tracking of the acoustic envelope and abstract linguistic units at the phoneme and word levels, and beyond. However, the degree to which speech tracking is driven by acoustic edges of the signal, or by internally-generated linguistic units, or by the interplay of both, remains contentious. In this study, we used naturalistic story-listening to investigate (1) whether phoneme-level features are tracked over and above acoustic edges, (2) whether word entropy, which can reflect sentence- and discourse-level constraints, impacted the encoding of acoustic and phoneme-level features, and (3) whether the tracking of acoustic edges was enhanced or suppressed during comprehension of a first language (Dutch) compared to a statistically familiar but uncomprehended language (French). We first show that encoding models with phoneme-level linguistic features, in addition to acoustic features, uncovered an increased neural tracking response; this signal was further amplified in a comprehended language, putatively reflecting the transformation of acoustic features into internally generated phoneme-level representations. Phonemes were tracked more strongly in a comprehended language, suggesting that language comprehension functions as a neural filter over acoustic edges of the speech signal as it transforms sensory signals into abstract linguistic units. We then show that word entropy enhances neural tracking of both acoustic and phonemic features when sentence- and discourse-context are less constraining. When language was not comprehended, acoustic features, but not phonemic ones, were more strongly modulated, but in contrast, when a native language is comprehended, phoneme features are more strongly modulated. Taken together, our findings highlight the flexible modulation of acoustic, and phonemic features by sentence and discourse-level constraint in language comprehension, and document the neural transformation from speech perception to language comprehension, consistent with an account of language processing as a neural filter from sensory to abstract representations.
  • Zioga, I., Weissbart, H., Lewis, A. G., Haegens, S., & Martin, A. E. (2023). Naturalistic spoken language comprehension is supported by alpha and beta oscillations. The Journal of Neuroscience, 43(20), 3718-3732. doi:10.1523/JNEUROSCI.1500-22.2023.

    Abstract

    Brain oscillations are prevalent in all species and are involved in numerous perceptual operations. α oscillations are thought to facilitate processing through the inhibition of task-irrelevant networks, while β oscillations are linked to the putative reactivation of content representations. Can the proposed functional role of α and β oscillations be generalized from low-level operations to higher-level cognitive processes? Here we address this question focusing on naturalistic spoken language comprehension. Twenty-two (18 female) Dutch native speakers listened to stories in Dutch and French while MEG was recorded. We used dependency parsing to identify three dependency states at each word: the number of (1) newly opened dependencies, (2) dependencies that remained open, and (3) resolved dependencies. We then constructed forward models to predict α and β power from the dependency features. Results showed that dependency features predict α and β power in language-related regions beyond low-level linguistic features. Left temporal, fundamental language regions are involved in language comprehension in α, while frontal and parietal, higher-order language regions, and motor regions are involved in β. Critically, α- and β-band dynamics seem to subserve language comprehension tapping into syntactic structure building and semantic composition by providing low-level mechanistic operations for inhibition and reactivation processes. Because of the temporal similarity of the α-β responses, their potential functional dissociation remains to be elucidated. Overall, this study sheds light on the role of α and β oscillations during naturalistic spoken language comprehension, providing evidence for the generalizability of these dynamics from perceptual to complex linguistic processes.
  • Brennan, J. R., & Martin, A. E. (2019). Phase synchronization varies systematically with linguistic structure composition. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 375(1791): 20190305. doi:10.1098/rstb.2019.0305.

    Abstract

    Computation in neuronal assemblies is putatively reflected in the excitatory and inhibitory cycles of activation distributed throughout the brain. In speech and language processing, coordination of these cycles resulting in phase synchronization has been argued to reflect the integration of information on different timescales (e.g. segmenting acoustics signals to phonemic and syllabic representations; (Giraud and Poeppel 2012 Nat. Neurosci.15, 511 (doi:10.1038/nn.3063)). A natural extension of this claim is that phase synchronization functions similarly to support the inference of more abstract higher-level linguistic structures (Martin 2016 Front. Psychol.7, 120; Martin and Doumas 2017 PLoS Biol. 15, e2000663 (doi:10.1371/journal.pbio.2000663); Martin and Doumas. 2019 Curr. Opin. Behav. Sci.29, 77–83 (doi:10.1016/j.cobeha.2019.04.008)). Hale et al. (Hale et al. 2018 Finding syntax in human encephalography with beam search. arXiv 1806.04127 (http://arxiv.org/abs/1806.04127)) showed that syntactically driven parsing decisions predict electroencephalography (EEG) responses in the time domain; here we ask whether phase synchronization in the form of either inter-trial phrase coherence or cross-frequency coupling (CFC) between high-frequency (i.e. gamma) bursts and lower-frequency carrier signals (i.e. delta, theta), changes as the linguistic structures of compositional meaning (viz., bracket completions, as denoted by the onset of words that complete phrases) accrue. We use a naturalistic story-listening EEG dataset from Hale et al. to assess the relationship between linguistic structure and phase alignment. We observe increased phase synchronization as a function of phrase counts in the delta, theta, and gamma bands, especially for function words. A more complex pattern emerged for CFC as phrase count changed, possibly related to the lack of a one-to-one mapping between ‘size’ of linguistic structure and frequency band—an assumption that is tacit in recent frameworks. These results emphasize the important role that phase synchronization, desynchronization, and thus, inhibition, play in the construction of compositional meaning by distributed neural networks in the brain.
  • Martin, A. E., & Baggio, G. (2019). Modeling meaning composition from formalism to mechanism. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 375: 20190298. doi:10.1098/rstb.2019.0298.

    Abstract

    Human thought and language have extraordinary expressive power because meaningful parts can be assembled into more complex semantic structures. This partly underlies our ability to compose meanings into endlessly novel configurations, and sets us apart from other species and current computing devices. Crucially, human behaviour, including language use and linguistic data, indicates that composing parts into complex structures does not threaten the existence of constituent parts as independent units in the system: parts and wholes exist simultaneously yet independently from one another in the mind and brain. This independence is evident in human behaviour, but it seems at odds with what is known about the brain's exquisite sensitivity to statistical patterns: everyday language use is productive and expressive precisely because it can go beyond statistical regularities. Formal theories in philosophy and linguistics explain this fact by assuming that language and thought are compositional: systems of representations that separate a variable (or role) from its values (fillers), such that the meaning of a complex expression is a function of the values assigned to the variables. The debate on whether and how compositional systems could be implemented in minds, brains and machines remains vigorous. However, it has not yet resulted in mechanistic models of semantic composition: how, then, are the constituents of thoughts and sentences put and held together? We review and discuss current efforts at understanding this problem, and we chart possible routes for future research.
  • Martin, A. E., & Doumas, L. A. A. (2019). Tensors and compositionality in neural systems. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 375(1791): 20190306. doi:10.1098/rstb.2019.0306.

    Abstract

    Neither neurobiological nor process models of meaning composition specify the operator through which constituent parts are bound together into compositional structures. In this paper, we argue that a neurophysiological computation system cannot achieve the compositionality exhibited in human thought and language if it were to rely on a multiplicative operator to perform binding, as the tensor product (TP)-based systems that have been widely adopted in cognitive science, neuroscience and artificial intelligence do. We show via simulation and two behavioural experiments that TPs violate variable-value independence, but human behaviour does not. Specifically, TPs fail to capture that in the statements fuzzy cactus and fuzzy penguin, both cactus and penguin are predicated by fuzzy(x) and belong to the set of fuzzy things, rendering these arguments similar to each other. Consistent with that thesis, people judged arguments that shared the same role to be similar, even when those arguments themselves (e.g., cacti and penguins) were judged to be dissimilar when in isolation. By contrast, the similarity of the TPs representing fuzzy(cactus) and fuzzy(penguin) was determined by the similarity of the arguments, which in this case approaches zero. Based on these results, we argue that neural systems that use TPs for binding cannot approximate how the human mind and brain represent compositional information during processing. We describe a contrasting binding mechanism that any physiological or artificial neural system could use to maintain independence between a role and its argument, a prerequisite for compositionality and, thus, for instantiating the expressive power of human thought and language in a neural system.

    Additional information

    Supplemental Material
  • Martin, A. E., & Doumas, L. A. A. (2019). Predicate learning in neural systems: Using oscillations to discover latent structure. Current Opinion in Behavioral Sciences, 29, 77-83. doi:10.1016/j.cobeha.2019.04.008.

    Abstract

    Humans learn to represent complex structures (e.g. natural language, music, mathematics) from experience with their environments. Often such structures are latent, hidden, or not encoded in statistics about sensory representations alone. Accounts of human cognition have long emphasized the importance of structured representations, yet the majority of contemporary neural networks do not learn structure from experience. Here, we describe one way that structured, functionally symbolic representations can be instantiated in an artificial neural network. Then, we describe how such latent structures (viz. predicates) can be learned from experience with unstructured data. Our approach exploits two principles from psychology and neuroscience: comparison of representations, and the naturally occurring dynamic properties of distributed computing across neuronal assemblies (viz. neural oscillations). We discuss how the ability to learn predicates from experience, to represent information compositionally, and to extrapolate knowledge to unseen data is core to understanding and modeling the most complex human behaviors (e.g. relational reasoning, analogy, language processing, game play).
  • Davidson, D., & Martin, A. E. (2013). Modeling accuracy as a function of response time with the generalized linear mixed effects model. Acta Psychologica, 144(1), 83-96. doi:10.1016/j.actpsy.2013.04.016.

    Abstract

    In psycholinguistic studies using error rates as a response measure, response times (RT) are most often analyzed independently of the error rate, although it is widely recognized that they are related. In this paper we present a mixed effects logistic regression model for the error rate that uses RT as a trial-level fixed- and random-effect regression input. Production data from a translation–recall experiment are analyzed as an example. Several model comparisons reveal that RT improves the fit of the regression model for the error rate. Two simulation studies then show how the mixed effects regression model can identify individual participants for whom (a) faster responses are more accurate, (b) faster responses are less accurate, or (c) there is no relation between speed and accuracy. These results show that this type of model can serve as a useful adjunct to traditional techniques, allowing psycholinguistic researchers to examine more closely the relationship between RT and accuracy in individual subjects and better account for the variability which may be present, as well as a preliminary step to more advanced RT–accuracy modeling.
  • Nieuwland, M. S., Martin, A. E., & Carreiras, M. (2013). Event-related brain potential evidence for animacy processing asymmetries during sentence comprehension. Brain and Language, 126(2), 151-158. doi:10.1016/j.bandl.2013.04.005.

    Abstract

    The animacy distinction is deeply rooted in the language faculty. A key example is differential object marking, the phenomenon where animate sentential objects receive specific marking. We used event-related potentials to examine the neural processing consequences of case-marking violations on animate and inanimate direct objects in Spanish. Inanimate objects with incorrect prepositional case marker ‘a’ (‘al suelo’) elicited a P600 effect compared to unmarked objects, consistent with previous literature. However, animate objects without the required prepositional case marker (‘el obispo’) only elicited an N400 effect compared to marked objects. This novel finding, an exclusive N400 modulation by a straightforward grammatical rule violation, does not follow from extant neurocognitive models of sentence processing, and mirrors unexpected “semantic P600” effects for thematically problematic sentences. These results may reflect animacy asymmetry in competition for argument prominence: following the article, thematic interpretation difficulties are elicited only by unexpectedly animate objects.

Share this page