Displaying 1 - 3 of 3
-
Coopmans, C. W., De Hoop, H., Tezcan, F., Hagoort, P., & Martin, A. E. (2025). Language-specific neural dynamics extend syntax into the time domain. PLOS Biology, 23: e3002968. doi:10.1371/journal.pbio.3002968.
Abstract
Studies of perception have long shown that the brain adds information to its sensory analysis of the physical environment. A touchstone example for humans is language use: to comprehend a physical signal like speech, the brain must add linguistic knowledge, including syntax. Yet, syntactic rules and representations are widely assumed to be atemporal (i.e., abstract and not bound by time), so they must be translated into time-varying signals for speech comprehension and production. Here, we test 3 different models of the temporal spell-out of syntactic structure against brain activity of people listening to Dutch stories: an integratory bottom-up parser, a predictive top-down parser, and a mildly predictive left-corner parser. These models build exactly the same structure but differ in when syntactic information is added by the brain—this difference is captured in the (temporal distribution of the) complexity metric “incremental node count.” Using temporal response function models with both acoustic and information-theoretic control predictors, node counts were regressed against source-reconstructed delta-band activity acquired with magnetoencephalography. Neural dynamics in left frontal and temporal regions most strongly reflect node counts derived by the top-down method, which postulates syntax early in time, suggesting that predictive structure building is an important component of Dutch sentence comprehension. The absence of strong effects of the left-corner model further suggests that its mildly predictive strategy does not represent Dutch language comprehension well, in contrast to what has been found for English. Understanding when the brain projects its knowledge of syntax onto speech, and whether this is done in language-specific ways, will inform and constrain the development of mechanistic models of syntactic structure building in the brain. -
Davidson, D., & Martin, A. E. (2013). Modeling accuracy as a function of response time with the generalized linear mixed effects model. Acta Psychologica, 144(1), 83-96. doi:10.1016/j.actpsy.2013.04.016.
Abstract
In psycholinguistic studies using error rates as a response measure, response times (RT) are most often analyzed independently of the error rate, although it is widely recognized that they are related. In this paper we present a mixed effects logistic regression model for the error rate that uses RT as a trial-level fixed- and random-effect regression input. Production data from a translation–recall experiment are analyzed as an example. Several model comparisons reveal that RT improves the fit of the regression model for the error rate. Two simulation studies then show how the mixed effects regression model can identify individual participants for whom (a) faster responses are more accurate, (b) faster responses are less accurate, or (c) there is no relation between speed and accuracy. These results show that this type of model can serve as a useful adjunct to traditional techniques, allowing psycholinguistic researchers to examine more closely the relationship between RT and accuracy in individual subjects and better account for the variability which may be present, as well as a preliminary step to more advanced RT–accuracy modeling. -
Nieuwland, M. S., Martin, A. E., & Carreiras, M. (2013). Event-related brain potential evidence for animacy processing asymmetries during sentence comprehension. Brain and Language, 126(2), 151-158. doi:10.1016/j.bandl.2013.04.005.
Abstract
The animacy distinction is deeply rooted in the language faculty. A key example is differential object marking, the phenomenon where animate sentential objects receive specific marking. We used event-related potentials to examine the neural processing consequences of case-marking violations on animate and inanimate direct objects in Spanish. Inanimate objects with incorrect prepositional case marker ‘a’ (‘al suelo’) elicited a P600 effect compared to unmarked objects, consistent with previous literature. However, animate objects without the required prepositional case marker (‘el obispo’) only elicited an N400 effect compared to marked objects. This novel finding, an exclusive N400 modulation by a straightforward grammatical rule violation, does not follow from extant neurocognitive models of sentence processing, and mirrors unexpected “semantic P600” effects for thematically problematic sentences. These results may reflect animacy asymmetry in competition for argument prominence: following the article, thematic interpretation difficulties are elicited only by unexpectedly animate objects.
Share this page