Andrea E. Martin

Publications

Displaying 1 - 17 of 17
  • Coopmans, C. W., Mai, A., Slaats, S., Weissbart, H., & Martin, A. E. (2023). What oscillations can do for syntax depends on your theory of structure building. Nature Reviews Neuroscience, 24, 723. doi:10.1038/s41583-023-00734-5.
  • Coopmans, C. W., Kaushik, K., & Martin, A. E. (2023). Hierarchical structure in language and action: A formal comparison. Psychological Review, 130(4), 935-952. doi:10.1037/rev0000429.

    Abstract

    Since the cognitive revolution, language and action have been compared as cognitive systems, with cross-domain convergent views recently gaining renewed interest in biology, neuroscience, and cognitive science. Language and action are both combinatorial systems whose mode of combination has been argued to be hierarchical, combining elements into constituents of increasingly larger size. This structural similarity has led to the suggestion that they rely on shared cognitive and neural resources. In this article, we compare the conceptual and formal properties of hierarchy in language and action using set theory. We show that the strong compositionality of language requires a particular formalism, a magma, to describe the algebraic structure corresponding to the set of hierarchical structures underlying sentences. When this formalism is applied to actions, it appears to be both too strong and too weak. To overcome these limitations, which are related to the weak compositionality and sequential nature of action structures, we formalize the algebraic structure corresponding to the set of actions as a trace monoid. We aim to capture the different system properties of language and action in terms of the distinction between hierarchical sets and hierarchical sequences and discuss the implications for the way both systems could be represented in the brain.
  • Guest, O., & Martin, A. E. (2023). On logical inference over brains, behaviour, and artificial neural networks. Computational Brain & Behavior, 6, 213-227. doi:10.1007/s42113-022-00166-x.

    Abstract

    In the cognitive, computational, and neuro-sciences, practitioners often reason about what computational models represent or learn, as well as what algorithm is instantiated. The putative goal of such reasoning is to generalize claims about the model in question, to claims about the mind and brain, and the neurocognitive capacities of those systems. Such inference is often based on a model’s performance on a task, and whether that performance approximates human behavior or brain activity. Here we demonstrate how such argumentation problematizes the relationship between models and their targets; we place emphasis on artificial neural networks (ANNs), though any theory-brain relationship that falls into the same schema of reasoning is at risk. In this paper, we model inferences from ANNs to brains and back within a formal framework — metatheoretical calculus — in order to initiate a dialogue on both how models are broadly understood and used, and on how to best formally characterize them and their functions. To these ends, we express claims from the published record about models’ successes and failures in first-order logic. Our proposed formalization describes the decision-making processes enacted by scientists to adjudicate over theories. We demonstrate that formalizing the argumentation in the literature can uncover potential deep issues about how theory is related to phenomena. We discuss what this means broadly for research in cognitive science, neuroscience, and psychology; what it means for models when they lose the ability to mediate between theory and data in a meaningful way; and what this means for the metatheoretical calculus our fields deploy when performing high-level scientific inference.
  • Slaats, S., Weissbart, H., Schoffelen, J.-M., Meyer, A. S., & Martin, A. E. (2023). Delta-band neural responses to individual words are modulated by sentence processing. The Journal of Neuroscience, 43(26), 4867-4883. doi:10.1523/JNEUROSCI.0964-22.2023.

    Abstract

    To understand language, we need to recognize words and combine them into phrases and sentences. During this process, responses to the words themselves are changed. In a step towards understanding how the brain builds sentence structure, the present study concerns the neural readout of this adaptation. We ask whether low-frequency neural readouts associated with words change as a function of being in a sentence. To this end, we analyzed an MEG dataset by Schoffelen et al. (2019) of 102 human participants (51 women) listening to sentences and word lists, the latter lacking any syntactic structure and combinatorial meaning. Using temporal response functions and a cumulative model-fitting approach, we disentangled delta- and theta-band responses to lexical information (word frequency), from responses to sensory- and distributional variables. The results suggest that delta-band responses to words are affected by sentence context in time and space, over and above entropy and surprisal. In both conditions, the word frequency response spanned left temporal and posterior frontal areas; however, the response appeared later in word lists than in sentences. In addition, sentence context determined whether inferior frontal areas were responsive to lexical information. In the theta band, the amplitude was larger in the word list condition around 100 milliseconds in right frontal areas. We conclude that low-frequency responses to words are changed by sentential context. The results of this study speak to how the neural representation of words is affected by structural context, and as such provide insight into how the brain instantiates compositionality in language.
  • Tezcan, F., Weissbart, H., & Martin, A. E. (2023). A tradeoff between acoustic and linguistic feature encoding in spoken language comprehension. eLife, 12: e82386. doi:10.7554/eLife.82386.

    Abstract

    When we comprehend language from speech, the phase of the neural response aligns with particular features of the speech input, resulting in a phenomenon referred to as neural tracking. In recent years, a large body of work has demonstrated the tracking of the acoustic envelope and abstract linguistic units at the phoneme and word levels, and beyond. However, the degree to which speech tracking is driven by acoustic edges of the signal, or by internally-generated linguistic units, or by the interplay of both, remains contentious. In this study, we used naturalistic story-listening to investigate (1) whether phoneme-level features are tracked over and above acoustic edges, (2) whether word entropy, which can reflect sentence- and discourse-level constraints, impacted the encoding of acoustic and phoneme-level features, and (3) whether the tracking of acoustic edges was enhanced or suppressed during comprehension of a first language (Dutch) compared to a statistically familiar but uncomprehended language (French). We first show that encoding models with phoneme-level linguistic features, in addition to acoustic features, uncovered an increased neural tracking response; this signal was further amplified in a comprehended language, putatively reflecting the transformation of acoustic features into internally generated phoneme-level representations. Phonemes were tracked more strongly in a comprehended language, suggesting that language comprehension functions as a neural filter over acoustic edges of the speech signal as it transforms sensory signals into abstract linguistic units. We then show that word entropy enhances neural tracking of both acoustic and phonemic features when sentence- and discourse-context are less constraining. When language was not comprehended, acoustic features, but not phonemic ones, were more strongly modulated, but in contrast, when a native language is comprehended, phoneme features are more strongly modulated. Taken together, our findings highlight the flexible modulation of acoustic, and phonemic features by sentence and discourse-level constraint in language comprehension, and document the neural transformation from speech perception to language comprehension, consistent with an account of language processing as a neural filter from sensory to abstract representations.
  • Zioga, I., Weissbart, H., Lewis, A. G., Haegens, S., & Martin, A. E. (2023). Naturalistic spoken language comprehension is supported by alpha and beta oscillations. The Journal of Neuroscience, 43(20), 3718-3732. doi:10.1523/JNEUROSCI.1500-22.2023.

    Abstract

    Brain oscillations are prevalent in all species and are involved in numerous perceptual operations. α oscillations are thought to facilitate processing through the inhibition of task-irrelevant networks, while β oscillations are linked to the putative reactivation of content representations. Can the proposed functional role of α and β oscillations be generalized from low-level operations to higher-level cognitive processes? Here we address this question focusing on naturalistic spoken language comprehension. Twenty-two (18 female) Dutch native speakers listened to stories in Dutch and French while MEG was recorded. We used dependency parsing to identify three dependency states at each word: the number of (1) newly opened dependencies, (2) dependencies that remained open, and (3) resolved dependencies. We then constructed forward models to predict α and β power from the dependency features. Results showed that dependency features predict α and β power in language-related regions beyond low-level linguistic features. Left temporal, fundamental language regions are involved in language comprehension in α, while frontal and parietal, higher-order language regions, and motor regions are involved in β. Critically, α- and β-band dynamics seem to subserve language comprehension tapping into syntactic structure building and semantic composition by providing low-level mechanistic operations for inhibition and reactivation processes. Because of the temporal similarity of the α-β responses, their potential functional dissociation remains to be elucidated. Overall, this study sheds light on the role of α and β oscillations during naturalistic spoken language comprehension, providing evidence for the generalizability of these dynamics from perceptual to complex linguistic processes.
  • Doumas, L. A. A., Hamer, A., Puebla, G., & Martin, A. E. (2017). A theory of the detection and learning of structured representations of similarity and relative magnitude. In G. Gunzelmann, A. Howes, T. Tenbrink, & E. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (CogSci 2017) (pp. 1955-1960). Austin, TX: Cognitive Science Society.

    Abstract

    Responding to similarity, difference, and relative magnitude (SDM) is ubiquitous in the animal kingdom. However, humans seem unique in the ability to represent relative magnitude (‘more’/‘less’) and similarity (‘same’/‘different’) as abstract relations that take arguments (e.g., greater-than (x,y)). While many models use structured relational representations of magnitude and similarity, little progress has been made on how these representations arise. Models that developuse these representations assume access to computations of similarity and magnitude a priori, either encoded as features or as output of evaluation operators. We detail a mechanism for producing invariant responses to “same”, “different”, “more”, and “less” which can be exploited to compute similarity and magnitude as an evaluation operator. Using DORA (Doumas, Hummel, & Sandhofer, 2008), these invariant responses can serve be used to learn structured relational representations of relative magnitude and similarity from pixel images of simple shapes
  • Ito, A., Martin, A. E., & Nieuwland, M. S. (2017). How robust are prediction effects in language comprehension? Failure to replicate article-elicited N400 effects. Language, Cognition and Neuroscience, 32, 954-965. doi:10.1080/23273798.2016.1242761.

    Abstract

    Current psycholinguistic theory proffers prediction as a central, explanatory mechanism in language
    processing. However, widely-replicated prediction effects may not mean that prediction is
    necessary in language processing. As a case in point, C. D. Martin et al. [2013. Bilinguals reading
    in their second language do not predict upcoming words as native readers do.
    Journal of
    Memory and Language, 69
    (4), 574

    588. doi:10.1016/j.jml.2013.08.001] reported ERP evidence for
    prediction in native- but not in non-native speakers. Articles mismatching an expected noun
    elicited larger negativity in the N400 time window compared to articles matching the expected
    noun in native speakers only. We attempted to replicate these findings, but found no evidence
    for prediction irrespective of language nativeness. We argue that pre-activation of phonological
    form of upcoming nouns, as evidenced in article-elicited effects, may not be a robust
    phenomenon. A view of prediction as a necessary computation in language comprehension
    must be re-evaluated.
  • Ito, A., Martin, A. E., & Nieuwland, M. S. (2017). On predicting form and meaning in a second language. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(4), 635-652. doi:10.1037/xlm0000315.

    Abstract

    We used event-related potentials (ERP) to investigate whether Spanish−English bilinguals preactivate form and meaning of predictable words. Participants read high-cloze sentence contexts (e.g., “The student is going to the library to borrow a . . .”), followed by the predictable word (book), a word that was form-related (hook) or semantically related (page) to the predictable word, or an unrelated word (sofa). Word stimulus onset synchrony (SOA) was 500 ms (Experiment 1) or 700 ms (Experiment 2). In both experiments, all nonpredictable words elicited classic N400 effects. Form-related and unrelated words elicited similar N400 effects. Semantically related words elicited smaller N400s than unrelated words, which however, did not depend on cloze value of the predictable word. Thus, we found no N400 evidence for preactivation of form or meaning at either SOA, unlike native-speaker results (Ito, Corley et al., 2016). However, non-native speakers did show the post-N400 posterior positivity (LPC effect) for form-related words like native speakers, but only at the slower SOA. This LPC effect increased gradually with cloze value of the predictable word. We do not interpret this effect as necessarily demonstrating prediction, but rather as evincing combined effects of top-down activation (contextual meaning) and bottom-up activation (form similarity) that result in activation of unseen words that fit the context well, thereby leading to an interpretation conflict reflected in the LPC. Although there was no evidence that non-native speakers preactivate form or meaning, non-native speakers nonetheless appear to use bottom-up and top-down information to constrain incremental interpretation much like native speakers do.
  • Ito, A., Martin, A. E., & Nieuwland, M. S. (2017). Why the A/AN prediction effect may be hard to replicate: A rebuttal to DeLong, Urbach & Kutas (2017). Language, Cognition and Neuroscience, 32(8), 974-983. doi:10.1080/23273798.2017.1323112.
  • Martin, A. E., & Doumas, L. A. A. (2017). A mechanism for the cortical computation of hierarchical linguistic structure. PLoS Biology, 15(3): e2000663. doi:10.1371/journal.pbio.2000663.

    Abstract

    Biological systems often detect species-specific signals in the environment. In humans, speech and language are species-specific signals of fundamental biological importance. To detect the linguistic signal, human brains must form hierarchical representations from a sequence of perceptual inputs distributed in time. What mechanism underlies this ability? One hypothesis is that the brain repurposed an available neurobiological mechanism when hierarchical linguistic representation became an efficient solution to a computational problem posed to the organism. Under such an account, a single mechanism must have the capacity to perform multiple, functionally related computations, e.g., detect the linguistic signal and perform other cognitive functions, while, ideally, oscillating like the human brain. We show that a computational model of analogy, built for an entirely different purpose—learning relational reasoning—processes sentences, represents their meaning, and, crucially, exhibits oscillatory activation patterns resembling cortical signals elicited by the same stimuli. Such redundancy in the cortical and machine signals is indicative of formal and mechanistic alignment between representational structure building and “cortical” oscillations. By inductive inference, this synergy suggests that the cortical signal reflects structure generation, just as the machine signal does. A single mechanism—using time to encode information across a layered network—generates the kind of (de)compositional representational hierarchy that is crucial for human language and offers a mechanistic linking hypothesis between linguistic representation and cortical computation
  • Martin, A. E., Huettig, F., & Nieuwland, M. S. (2017). Can structural priming answer the important questions about language? A commentary on Branigan and Pickering "An experimental approach to linguistic representation". Behavioral and Brain Sciences, 40: e304. doi:10.1017/S0140525X17000528.

    Abstract

    While structural priming makes a valuable contribution to psycholinguistics, it does not allow direct observation of representation, nor escape “source ambiguity.” Structural priming taps into implicit memory representations and processes that may differ from what is used online. We question whether implicit memory for language can and should be equated with linguistic representation or with language processing.
  • Martin, A. E., Monahan, P. J., & Samuel, A. G. (2017). Prediction of agreement and phonetic overlap shape sublexical identification. Language and Speech, 60(3), 356-376. doi:10.1177/0023830916650714.

    Abstract

    The mapping between the physical speech signal and our internal representations is rarely straightforward. When faced with uncertainty, higher-order information is used to parse the signal and because of this, the lexicon and some aspects of sentential context have been shown to modulate the identification of ambiguous phonetic segments. Here, using a phoneme identification task (i.e., participants judged whether they heard [o] or [a] at the end of an adjective in a noun–adjective sequence), we asked whether grammatical gender cues influence phonetic identification and if this influence is shaped by the phonetic properties of the agreeing elements. In three experiments, we show that phrase-level gender agreement in Spanish affects the identification of ambiguous adjective-final vowels. Moreover, this effect is strongest when the phonetic characteristics of the element triggering agreement and the phonetic form of the agreeing element are identical. Our data are consistent with models wherein listeners generate specific predictions based on the interplay of underlying morphosyntactic knowledge and surface phonetic cues.
  • Nieuwland, M. S., & Martin, A. E. (2017). Neural oscillations and a nascent corticohippocampal theory of reference. Journal of Cognitive Neuroscience, 29(5), 896-910. doi:10.1162/jocn_a_01091.

    Abstract

    The ability to use words to refer to the world is vital to the communicative power of human language. In particular, the anaphoric use of words to refer to previously mentioned concepts (antecedents) allows dialogue to be coherent and meaningful. Psycholinguistic theory posits that anaphor comprehension involves reactivating a memory representation of the antecedent. Whereas this implies the involvement of recognition memory, or the mnemonic sub-routines by which people distinguish old from new, the neural processes for reference resolution are largely unknown. Here, we report time-frequency analysis of four EEG experiments to reveal the increased coupling of functional neural systems associated with referentially coherent expressions compared to referentially problematic expressions. Despite varying in modality, language, and type of referential expression, all experiments showed larger gamma-band power for referentially coherent expressions compared to referentially problematic expressions. Beamformer analysis in high-density Experiment 4 localised the gamma-band increase to posterior parietal cortex around 400-600 ms after anaphor-onset and to frontaltemporal cortex around 500-1000 ms. We argue that the observed gamma-band power increases reflect successful referential binding and resolution, which links incoming information to antecedents through an interaction between the brain’s recognition memory networks and frontal-temporal language network. We integrate these findings with previous results from patient and neuroimaging studies, and we outline a nascent cortico-hippocampal theory of reference.
  • Doumas, L. A., & Martin, A. E. (2016). Abstraction in time: Finding hierarchical linguistic structure in a model of relational processing. In A. Papafragou, D. Grodner, D. Mirman, & J. Trueswell (Eds.), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016) (pp. 2279-2284). Austin, TX: Cognitive Science Society.

    Abstract

    Abstract mental representation is fundamental for human cognition. Forming such representations in time, especially from dynamic and noisy perceptual input, is a challenge for any processing modality, but perhaps none so acutely as for language processing. We show that LISA (Hummel & Holyaok, 1997) and DORA (Doumas, Hummel, & Sandhofer, 2008), models built to process and to learn structured (i.e., symbolic) rep resentations of conceptual properties and relations from unstructured inputs, show oscillatory activation during processing that is highly similar to the cortical activity elicited by the linguistic stimuli from Ding et al.(2016). We argue, as Ding et al.(2016), that this activation reflects formation of hierarchical linguistic representation, and furthermore, that the kind of computational mechanisms in LISA/DORA (e.g., temporal binding by systematic asynchrony of firing) may underlie formation of abstract linguistic representations in the human brain. It may be this repurposing that allowed for the generation or mergence of hierarchical linguistic structure, and therefore, human language, from extant cognitive and neural systems. We conclude that models of thinking and reasoning and models of language processing must be integrated —not only for increased plausiblity, but in order to advance both fields towards a larger integrative model of human cognition
  • Ito, A., Corley, M., Pickering, M. J., Martin, A. E., & Nieuwland, M. S. (2016). Predicting form and meaning: Evidence from brain potentials. Journal of Memory and Language, 86, 157-171. doi:10.1016/j.jml.2015.10.007.

    Abstract

    We used ERPs to investigate the pre-activation of form and meaning in language comprehension. Participants read high-cloze sentence contexts (e.g., “The student is going to the library to borrow a…”), followed by a word that was predictable (book), form-related (hook) or semantically related (page) to the predictable word, or unrelated (sofa). At a 500 ms SOA (Experiment 1), semantically related words, but not form-related words, elicited a reduced N400 compared to unrelated words. At a 700 ms SOA (Experiment 2), semantically related words and form-related words elicited reduced N400 effects, but the effect for form-related words occurred in very high-cloze sentences only. At both SOAs, form-related words elicited an enhanced, post-N400 posterior positivity (Late Positive Component effect). The N400 effects suggest that readers can pre-activate meaning and form information for highly predictable words, but form pre-activation is more limited than meaning pre-activation. The post-N400 LPC effect suggests that participants detected the form similarity between expected and encountered input. Pre-activation of word forms crucially depends upon the time that readers have to make predictions, in line with production-based accounts of linguistic prediction.
  • Martin, A. E. (2016). Language processing as cue integration: Grounding the psychology of language in perception and neurophysiology. Frontiers in Psychology, 7: 120. doi:10.3389/fpsyg.2016.00120.

    Abstract

    I argue that cue integration, a psychophysiological mechanism from vision and multisensory perception, offers a computational linking hypothesis between psycholinguistic theory and neurobiological models of language. I propose that this mechanism, which incorporates probabilistic estimates of a cue's reliability, might function in language processing from the perception of a phoneme to the comprehension of a phrase structure. I briefly consider the implications of the cue integration hypothesis for an integrated theory of language that includes acquisition, production, dialogue and bilingualism, while grounding the hypothesis in canonical neural computation.

Share this page