Displaying 1 - 10 of 10
-
Coopmans, C. W., De Hoop, H., Kaushik, K., Hagoort, P., & Martin, A. E. (2021). Structure-(in)dependent interpretation of phrases in humans and LSTMs. In Proceedings of the Society for Computation in Linguistics (SCiL 2021) (pp. 459-463).
Abstract
In this study, we compared the performance of a long short-term memory (LSTM) neural network to the behavior of human participants on a language task that requires hierarchically structured knowledge. We show that humans interpret ambiguous noun phrases, such as second blue ball, in line with their hierarchical constituent structure. LSTMs, instead, only do
so after unambiguous training, and they do not systematically generalize to novel items. Overall, the results of our simulations indicate that a model can behave hierarchically without relying on hierarchical constituent structure.Additional information
full text via ScholarWorks@UMass Amherst -
Doumas, L. A. A., & Martin, A. E. (2021). A model for learning structured representations of similarity and relative magnitude from experience. Current Opinion in Behavioral Sciences, 37, 158-166. doi:10.1016/j.cobeha.2021.01.001.
Abstract
How a system represents information tightly constrains the kinds of problems it can solve. Humans routinely solve problems that appear to require abstract representations of stimulus properties and relations. How we acquire such representations has central importance in an account of human cognition. We briefly describe a theory of how a system can learn invariant responses to instances of similarity and relative magnitude, and how structured, relational representations can be learned from initially unstructured inputs. Two operations, comparing distributed representations and learning from the concomitant network dynamics in time, underpin the ability to learn these representations and to respond to invariance in the environment. Comparing analog representations of absolute magnitude produces invariant signals that carry information about similarity and relative magnitude. We describe how a system can then use this information to bootstrap learning structured (i.e., symbolic) concepts of relative magnitude from experience without assuming such representations a priori. -
Guest, O., & Martin, A. E. (2021). How computational modeling can force theory building in psychological science. Perspectives on Psychological Science, 16(4), 789-802. doi:10.1177/1745691620970585.
Abstract
Psychology endeavors to develop theories of human capacities and behaviors on the basis of a variety of methodologies and dependent measures. We argue that one of the most divisive factors in psychological science is whether researchers choose to use computational modeling of theories (over and above data) during the scientific-inference process. Modeling is undervalued yet holds promise for advancing psychological science. The inherent demands of computational modeling guide us toward better science by forcing us to conceptually analyze, specify, and formalize intuitions that otherwise remain unexamined—what we dub open theory. Constraining our inference process through modeling enables us to build explanatory and predictive theories. Here, we present scientific inference in psychology as a path function in which each step shapes the next. Computational modeling can constrain these steps, thus advancing scientific inference over and above the stewardship of experimental practice (e.g., preregistration). If psychology continues to eschew computational modeling, we predict more replicability crises and persistent failure at coherent theory building. This is because without formal modeling we lack open and transparent theorizing. We also explain how to formalize, specify, and implement a computational model, emphasizing that the advantages of modeling can be achieved by anyone with benefit to all. -
Puebla, G., Martin, A. E., & Doumas, L. A. A. (2021). The relational processing limits of classic and contemporary neural network models of language processing. Language, Cognition and Neuroscience, 36(2), 240-254. doi:10.1080/23273798.2020.1821906.
Abstract
Whether neural networks can capture relational knowledge is a matter of long-standing controversy. Recently, some researchers have argued that (1) classic connectionist models can handle relational structure and (2) the success of deep learning approaches to natural language processing suggests that structured representations are unnecessary to model human language. We tested the Story Gestalt model, a classic connectionist model of text comprehension, and a Sequence-to-Sequence with Attention model, a modern deep learning architecture for natural language processing. Both models were trained to answer questions about stories based on abstract thematic roles. Two simulations varied the statistical structure of new stories while keeping their relational structure intact. The performance of each model fell below chance at least under one manipulation. We argue that both models fail our tests because they can't perform dynamic binding. These results cast doubts on the suitability of traditional neural networks for explaining relational reasoning and language processing phenomena.Additional information
supplementary material -
Ten Oever, S., & Martin, A. E. (2021). An oscillating computational model can track pseudo-rhythmic speech by using linguistic predictions. eLife, 10: e68066. doi:10.7554/eLife.68066.
Abstract
Neuronal oscillations putatively track speech in order to optimize sensory processing. However, it is unclear how isochronous brain oscillations can track pseudo-rhythmic speech input. Here we propose that oscillations can track pseudo-rhythmic speech when considering that speech time is dependent on content-based predictions flowing from internal language models. We show that temporal dynamics of speech are dependent on the predictability of words in a sentence. A computational model including oscillations, feedback, and inhibition is able to track pseudo-rhythmic speech input. As the model processes, it generates temporal phase codes, which are a candidate mechanism for carrying information forward in time. The model is optimally sensitive to the natural temporal speech dynamics and can explain empirical data on temporal speech illusions. Our results suggest that speech tracking does not have to rely only on the acoustics but could also exploit ongoing interactions between oscillations and constraints flowing from internal language models. -
Martin, A. E., Nieuwland, M. S., & Carreiras, M. (2012). Event-related brain potentials index cue-based retrieval interference during sentence comprehension. NeuroImage, 59(2), 1859-1869. doi:10.1016/j.neuroimage.2011.08.057.
Abstract
Successful language use requires access to products of past processing within an evolving discourse. A central issue for any neurocognitive theory of language then concerns the role of memory variables during language processing. Under a cue-based retrieval account of language comprehension, linguistic dependency resolution (e.g., retrieving antecedents) is subject to interference from other information in the sentence, especially information that occurs between the words that form the dependency (e.g., between the antecedent and the retrieval site). Retrieval interference may then shape processing complexity as a function of the match of the information at retrieval with the antecedent versus other recent or similar items in memory. To address these issues, we studied the online processing of ellipsis in Castilian Spanish, a language with morphological gender agreement. We recorded event-related brain potentials while participants read sentences containing noun-phrase ellipsis indicated by the determiner otro/a (‘another’). These determiners had a grammatically correct or incorrect gender with respect to their antecedent nouns that occurred earlier in the sentence. Moreover, between each antecedent and determiner, another noun phrase occurred that was structurally unavailable as an antecedent and that matched or mismatched the gender of the antecedent (i.e., a local agreement attractor). In contrast to extant P600 results on agreement violation processing, and inconsistent with predictions from neurocognitive models of sentence processing, grammatically incorrect determiners evoked a sustained, broadly distributed negativity compared to correct ones between 400 and 1000 ms after word onset, possibly related to sustained negativities as observed for referential processing difficulties. Crucially, this effect was modulated by the attractor: an increased negativity was observed for grammatically correct determiners that did not match the gender of the attractor, suggesting that structurally unavailable noun phrases were at least temporarily considered for grammatically correct ellipsis. These results constitute the first ERP evidence for cue-based retrieval interference during comprehension of grammatical sentences. -
Nieuwland, M. S., Martin, A. E., & Carreiras, M. (2012). Brain regions that process case: Evidence from basque. Human Brain Mapping, 33(11), 2509-2520. doi:10.1002/hbm.21377.
Abstract
The aim of this event-related fMRI study was to investigate the cortical networks involved in case processing, an operation that is crucial to language comprehension yet whose neural underpinnings are not well-understood. What is the relationship of these networks to those that serve other aspects of syntactic and semantic processing? Participants read Basque sentences that contained case violations, number agreement violations or semantic anomalies, or that were both syntactically and semantically correct. Case violations elicited activity increases, compared to correct control sentences, in a set of parietal regions including the posterior cingulate, the precuneus, and the left and right inferior parietal lobules. Number agreement violations also elicited activity increases in left and right inferior parietal regions, and additional activations in the left and right middle frontal gyrus. Regions-of-interest analyses showed that almost all of the clusters that were responsive to case or number agreement violations did not differentiate between these two. In contrast, the left and right anterior inferior frontal gyrus and the dorsomedial prefrontal cortex were only sensitive to semantic violations. Our results suggest that whereas syntactic and semantic anomalies clearly recruit distinct neural circuits, case, and number violations recruit largely overlapping neural circuits and that the distinction between the two rests on the relative contributions of parietal and prefrontal regions, respectively. Furthermore, our results are consistent with recently reported contributions of bilateral parietal and dorsolateral brain regions to syntactic processing, pointing towards potential extensions of current neurocognitive theories of language. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc. -
Nieuwland, M. S., & Martin, A. E. (2012). If the real world were irrelevant, so to speak: The role of propositional truth-value in counterfactual sentence comprehension. Cognition, 122(1), 102-109. doi:10.1016/j.cognition.2011.09.001.
Abstract
Propositional truth-value can be a defining feature of a sentence’s relevance to the unfolding discourse, and establishing propositional truth-value in context can be key to successful interpretation. In the current study, we investigate its role in the comprehension of counterfactual conditionals, which describe imaginary consequences of hypothetical events, and are thought to require keeping in mind both what is true and what is false. Pre-stored real-world knowledge may therefore intrude upon and delay counterfactual comprehension, which is predicted by some accounts of discourse comprehension, and has been observed during online comprehension. The impact of propositional truth-value may thus be delayed in counterfactual conditionals, as also claimed for sentences containing other types of logical operators (e.g., negation, scalar quantifiers). In an event-related potential (ERP) experiment, we investigated the impact of propositional truth-value when described consequences are both true and predictable given the counterfactual premise. False words elicited larger N400 ERPs than true words, in negated counterfactual sentences (e.g., “If N.A.S.A. had not developed its Apollo Project, the first country to land on the moon would have been Russia/America”) and real-world sentences (e.g., “Because N.A.S.A. developed its Apollo Project, the first country to land on the moon was America/Russia”) alike. These indistinguishable N400 effects of propositional truth-value, elicited by opposite word pairs, argue against disruptions by real-world knowledge during counterfactual comprehension, and suggest that incoming words are mapped onto the counterfactual context without any delay. Thus, provided a sufficiently constraining context, propositional truth-value rapidly impacts ongoing semantic processing, be the proposition factual or counterfactual. -
Ashby, J., & Martin, A. E. (2008). Prosodic phonological representations early in visual word recognition. Journal of Experimental Psychology: Human Perception and Performance, 34(1), 224-236. doi:10.1037/0096-1523.34.1.224.
Abstract
Two experiments examined the nature of the phonological representations used during visual word recognition. We tested whether a minimality constraint (R. Frost, 1998) limits the complexity of early representations to a simple string of phonemes. Alternatively, readers might activate elaborated representations that include prosodic syllable information before lexical access. In a modified lexical decision task (Experiment 1), words were preceded by parafoveal previews that were congruent with a target's initial syllable as well as previews that contained 1 letter more or less than the initial syllable. Lexical decision times were faster in the syllable congruent conditions than in the incongruent conditions. In Experiment 2, we recorded brain electrical potentials (electroencephalograms) during single word reading in a masked priming paradigm. The event-related potential waveform elicited in the syllable congruent condition was more positive 250-350 ms posttarget compared with the waveform elicited in the syllable incongruent condition. In combination, these experiments demonstrate that readers process prosodic syllable information early in visual word recognition in English. They offer further evidence that skilled readers routinely activate elaborated, speechlike phonological representations during silent reading. (PsycINFO Database Record (c) 2016 APA, all rights reserved) -
Martin, A. E., & McElree, B. (2008). A content-addressable pointer mechanism underlies comprehension of verb-phrase ellipsis. Journal of Memory and Language, 58(3), 879-906. doi:10.1016/j.jml.2007.06.010.
Abstract
Interpreting a verb-phrase ellipsis (VP ellipsis) requires accessing an antecedent in memory, and then integrating a representation of this antecedent into the local context. We investigated the online interpretation of VP ellipsis in an eye-tracking experiment and four speed–accuracy tradeoff experiments. To investigate whether the antecedent for a VP ellipsis is accessed with a search or direct-access retrieval process, Experiments 1 and 2 measured the effect of the distance between an ellipsis and its antecedent on the speed and accuracy of comprehension. Accuracy was lower with longer distances, indicating that interpolated material reduced the quality of retrieved information about the antecedent. However, contra a search process, distance did not affect the speed of interpreting ellipsis. This pattern suggests that antecedent representations are content-addressable and retrieved with a direct-access process. To determine whether interpreting ellipsis involves copying antecedent information into the ellipsis site, Experiments 3–5 manipulated the length and complexity of the antecedent. Some types of antecedent complexity lowered accuracy, notably, the number of discourse entities in the antecedent. However, neither antecedent length nor complexity affected the speed of interpreting the ellipsis. This pattern is inconsistent with a copy operation, and it suggests that ellipsis interpretation may involve a pointer to extant structures in memory.
Share this page