Displaying 1 - 3 of 3
-
Coopmans, C. W., De Hoop, H., Tezcan, F., Hagoort, P., & Martin, A. E. (2025). Language-specific neural dynamics extend syntax into the time domain. PLOS Biology, 23: e3002968. doi:10.1371/journal.pbio.3002968.
Abstract
Studies of perception have long shown that the brain adds information to its sensory analysis of the physical environment. A touchstone example for humans is language use: to comprehend a physical signal like speech, the brain must add linguistic knowledge, including syntax. Yet, syntactic rules and representations are widely assumed to be atemporal (i.e., abstract and not bound by time), so they must be translated into time-varying signals for speech comprehension and production. Here, we test 3 different models of the temporal spell-out of syntactic structure against brain activity of people listening to Dutch stories: an integratory bottom-up parser, a predictive top-down parser, and a mildly predictive left-corner parser. These models build exactly the same structure but differ in when syntactic information is added by the brain—this difference is captured in the (temporal distribution of the) complexity metric “incremental node count.” Using temporal response function models with both acoustic and information-theoretic control predictors, node counts were regressed against source-reconstructed delta-band activity acquired with magnetoencephalography. Neural dynamics in left frontal and temporal regions most strongly reflect node counts derived by the top-down method, which postulates syntax early in time, suggesting that predictive structure building is an important component of Dutch sentence comprehension. The absence of strong effects of the left-corner model further suggests that its mildly predictive strategy does not represent Dutch language comprehension well, in contrast to what has been found for English. Understanding when the brain projects its knowledge of syntax onto speech, and whether this is done in language-specific ways, will inform and constrain the development of mechanistic models of syntactic structure building in the brain. -
Martin, A. E., & McElree, B. (2009). Memory operations that support language comprehension: Evidence from verb-phrase ellipsis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(5), 1231-1239. doi:10.1037/a0016271.
Abstract
Comprehension of verb-phrase ellipsis (VPE) requires reevaluation of recently processed constituents, which often necessitates retrieval of information about the elided constituent from memory. A. E. Martin and B. McElree (2008) argued that representations formed during comprehension are content addressable and that VPE antecedents are retrieved from memory via a cue-dependent direct-access pointer rather than via a search process. This hypothesis was further tested by manipulating the location of interfering material—either before the onset of the antecedent (proactive interference; PI) or intervening between antecedent and ellipsis site (retroactive interference; RI). The speed–accuracy tradeoff procedure was used to measure the time course of VPE processing. The location of the interfering material affected VPE comprehension accuracy: RI conditions engendered lower accuracy than PI conditions. Crucially, location did not affect the speed of processing VPE, which is inconsistent with both forward and backward search mechanisms. The observed time-course profiles are consistent with the hypothesis that VPE antecedents are retrieved via a cue-dependent direct-access operation. (PsycINFO Database Record (c) 2016 APA, all rights reserved) -
Pylkkänen, L., Martin, A. E., McElree, B., & Smart, A. (2009). The Anterior Midline Field: Coercion or decision making? Brain and Language, 108(3), 184-190. doi:10.1016/j.bandl.2008.06.006.
Abstract
To study the neural bases of semantic composition in language processing without confounds from syntactic composition, recent magnetoencephalography (MEG) studies have investigated the processing of constructions that exhibit some type of syntax-semantics mismatch. The most studied case of such a mismatch is complement coercion; expressions such as the author began the book, where an entity-denoting noun phrase is coerced into an eventive meaning in order to match the semantic properties of the event-selecting verb (e.g., ‘the author began reading/writing the book’). These expressions have been found to elicit increased activity in the Anterior Midline Field (AMF), an MEG component elicited at frontomedial sensors at ∼400 ms after the onset of the coercing noun [Pylkkänen, L., & McElree, B. (2007). An MEG study of silent meaning. Journal of Cognitive Neuroscience, 19, 11]. Thus, the AMF constitutes a potential neural correlate of coercion. However, the AMF was generated in ventromedial prefrontal regions, which are heavily associated with decision-making. This raises the possibility that, instead of semantic processing, the AMF effect may have been related to the experimental task, which was a sensicality judgment. We tested this hypothesis by assessing the effect of coercion when subjects were simply reading for comprehension, without a decision-task. Additionally, we investigated coercion in an adjectival rather than a verbal environment to further generalize the findings. Our results show that an AMF effect of coercion is elicited without a decision-task and that the effect also extends to this novel syntactic environment. We conclude that in addition to its role in non-linguistic higher cognition, ventromedial prefrontal regions contribute to the resolution of syntax-semantics mismatches in language processing.
Share this page