Displaying 1 - 47 of 47
-
Burchardt, L., Van de Sande, Y., Kehy, M., Gamba, M., Ravignani, A., & Pouw, W. (2024). A toolkit for the dynamic study of air sacs in siamang and other elastic circular structures. PLOS Computational Biology, 20(6): e1012222. doi:10.1371/journal.pcbi.1012222.
Abstract
Biological structures are defined by rigid elements, such as bones, and elastic elements, like muscles and membranes. Computer vision advances have enabled automatic tracking of moving animal skeletal poses. Such developments provide insights into complex time-varying dynamics of biological motion. Conversely, the elastic soft-tissues of organisms, like the nose of elephant seals, or the buccal sac of frogs, are poorly studied and no computer vision methods have been proposed. This leaves major gaps in different areas of biology. In primatology, most critically, the function of air sacs is widely debated; many open questions on the role of air sacs in the evolution of animal communication, including human speech, remain unanswered. To support the dynamic study of soft-tissue structures, we present a toolkit for the automated tracking of semi-circular elastic structures in biological video data. The toolkit contains unsupervised computer vision tools (using Hough transform) and supervised deep learning (by adapting DeepLabCut) methodology to track inflation of laryngeal air sacs or other biological spherical objects (e.g., gular cavities). Confirming the value of elastic kinematic analysis, we show that air sac inflation correlates with acoustic markers that likely inform about body size. Finally, we present a pre-processed audiovisual-kinematic dataset of 7+ hours of closeup audiovisual recordings of siamang (Symphalangus syndactylus) singing. This toolkit (https://github.com/WimPouw/AirSacTracker) aims to revitalize the study of non-skeletal morphological structures across multiple species. -
Ghaleb, E., Rasenberg, M., Pouw, W., Toni, I., Holler, J., Özyürek, A., & Fernandez, R. (2024). Analysing cross-speaker convergence through the lens of automatically detected shared linguistic constructions. In L. K. Samuelson, S. L. Frank, A. Mackey, & E. Hazeltine (
Eds. ), Proceedings of the 46th Annual Meeting of the Cognitive Science Society (CogSci 2024) (pp. 1717-1723).Abstract
Conversation requires a substantial amount of coordination between dialogue participants, from managing turn taking to negotiating mutual understanding. Part of this coordination effort surfaces as the reuse of linguistic behaviour across speakers, a process often referred to as alignment. While the presence of linguistic alignment is well documented in the literature, several questions remain open, including the extent to which patterns of reuse across speakers have an impact on the emergence of labelling conventions for novel referents. In this study, we put forward a methodology for automatically detecting shared lemmatised constructions---expressions with a common lexical core used by both speakers within a dialogue---and apply it to a referential communication corpus where participants aim to identify novel objects for which no established labels exist. Our analyses uncover the usage patterns of shared constructions in interaction and reveal that features such as their frequency and the amount of different constructions used for a referent are associated with the degree of object labelling convergence the participants exhibit after social interaction. More generally, the present study shows that automatically detected shared constructions offer a useful level of analysis to investigate the dynamics of reference negotiation in dialogue.Additional information
link to eScholarship -
Ghaleb, E., Khaertdinov, B., Pouw, W., Rasenberg, M., Holler, J., Ozyurek, A., & Fernandez, R. (2024). Learning co-speech gesture representations in dialogue through contrastive learning: An intrinsic evaluation. In Proceedings of the 26th International Conference on Multimodal Interaction (ICMI 2024) (pp. 274-283).
Abstract
In face-to-face dialogues, the form-meaning relationship of co-speech gestures varies depending on contextual factors such as what the gestures refer to and the individual characteristics of speakers. These factors make co-speech gesture representation learning challenging. How can we learn meaningful gestures representations considering gestures’ variability and relationship with speech? This paper tackles this challenge by employing self-supervised contrastive learning techniques to learn gesture representations from skeletal and speech information. We propose an approach that includes both unimodal and multimodal pre-training to ground gesture representations in co-occurring speech. For training, we utilize a face-to-face dialogue dataset rich with representational iconic gestures. We conduct thorough intrinsic evaluations of the learned representations through comparison with human-annotated pairwise gesture similarity. Moreover, we perform a diagnostic probing analysis to assess the possibility of recovering interpretable gesture features from the learned representations. Our results show a significant positive correlation with human-annotated gesture similarity and reveal that the similarity between the learned representations is consistent with well-motivated patterns related to the dynamics of dialogue interaction. Moreover, our findings demonstrate that several features concerning the form of gestures can be recovered from the latent representations. Overall, this study shows that multimodal contrastive learning is a promising approach for learning gesture representations, which opens the door to using such representations in larger-scale gesture analysis studies. -
Ghaleb, E., Burenko, I., Rasenberg, M., Pouw, W., Uhrig, P., Holler, J., Toni, I., Ozyurek, A., & Fernandez, R. (2024). Cospeech gesture detection through multi-phase sequence labeling. In Proceedings of IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2024) (pp. 4007-4015).
Abstract
Gestures are integral components of face-to-face communication. They unfold over time, often following predictable movement phases of preparation, stroke, and re-
traction. Yet, the prevalent approach to automatic gesture detection treats the problem as binary classification, classifying a segment as either containing a gesture or not, thus failing to capture its inherently sequential and contextual nature. To address this, we introduce a novel framework that reframes the task as a multi-phase sequence labeling problem rather than binary classification. Our model processes sequences of skeletal movements over time windows, uses Transformer encoders to learn contextual embeddings, and leverages Conditional Random Fields to perform sequence labeling. We evaluate our proposal on a large dataset of diverse co-speech gestures in task-oriented face-to-face dialogues. The results consistently demonstrate that our method significantly outperforms strong baseline models in detecting gesture strokes. Furthermore, applying Transformer encoders to learn contextual embeddings from movement sequences substantially improves gesture unit detection. These results highlight our framework’s capacity to capture the fine-grained dynamics of co-speech gesture phases, paving the way for more nuanced and accurate gesture detection and analysis. -
Leonetti, S., Ravignani, A., & Pouw, W. (2024). A cross-species framework for classifying sound-movement couplings. Neuroscience and Biobehavioral Reviews, 167: 105911. doi:10.1016/j.neubiorev.2024.105911.
Abstract
Sound and movement are entangled in animal communication. This is obviously true in the case of sound-constituting vibratory movements of biological structures which generate acoustic waves. A little less obvious is that other moving structures produce the energy required to sustain these vibrations. In many species, the respiratory system moves to generate the expiratory flow which powers the sound-constituting movements (sound-powering movements). The sound may acquire additional structure via upper tract movements, such as articulatory movements or head raising (sound-filtering movements). Some movements are not necessary for sound production, but when produced, impinge on the sound-producing process due to weak biomechanical coupling with body parts (e.g., respiratory system) that are necessary for sound production (sound-impinging movements). Animals also produce sounds contingent with movement, requiring neuro-physiological control regimes allowing to flexibly couple movements to a produced sound, or coupling movements to a perceived external sound (sound-contingent movement). Here, we compare and classify the variety of ways sound and movements are coupled in animal communication; our proposed framework should help structure previous and future studies on this topic. -
Eijk, L., Rasenberg, M., Arnese, F., Blokpoel, M., Dingemanse, M., Doeller, C. F., Ernestus, M., Holler, J., Milivojevic, B., Özyürek, A., Pouw, W., Van Rooij, I., Schriefers, H., Toni, I., Trujillo, J. P., & Bögels, S. (2022). The CABB dataset: A multimodal corpus of communicative interactions for behavioural and neural analyses. NeuroImage, 264: 119734. doi:10.1016/j.neuroimage.2022.119734.
Abstract
We present a dataset of behavioural and fMRI observations acquired in the context of humans involved in multimodal referential communication. The dataset contains audio/video and motion-tracking recordings of face-to-face, task-based communicative interactions in Dutch, as well as behavioural and neural correlates of participants’ representations of dialogue referents. Seventy-one pairs of unacquainted participants performed two interleaved interactional tasks in which they described and located 16 novel geometrical objects (i.e., Fribbles) yielding spontaneous interactions of about one hour. We share high-quality video (from three cameras), audio (from head-mounted microphones), and motion-tracking (Kinect) data, as well as speech transcripts of the interactions. Before and after engaging in the face-to-face communicative interactions, participants’ individual representations of the 16 Fribbles were estimated. Behaviourally, participants provided a written description (one to three words) for each Fribble and positioned them along 29 independent conceptual dimensions (e.g., rounded, human, audible). Neurally, fMRI signal evoked by each Fribble was measured during a one-back working-memory task. To enable functional hyperalignment across participants, the dataset also includes fMRI measurements obtained during visual presentation of eight animated movies (35 minutes total). We present analyses for the various types of data demonstrating their quality and consistency with earlier research. Besides high-resolution multimodal interactional data, this dataset includes different correlates of communicative referents, obtained before and after face-to-face dialogue, allowing for novel investigations into the relation between communicative behaviours and the representational space shared by communicators. This unique combination of data can be used for research in neuroscience, psychology, linguistics, and beyond. -
Owoyele, B., Trujillo, J. P., De Melo, G., & Pouw, W. (2022). Masked-Piper: Masking personal identities in visual recordings while preserving multimodal information. SoftwareX, 20: 101236. doi:10.1016/j.softx.2022.101236.
Abstract
In this increasingly data-rich world, visual recordings of human behavior are often unable to be shared due to concerns about privacy. Consequently, data sharing in fields such as behavioral science, multimodal communication, and human movement research is often limited. In addition, in legal and other non-scientific contexts, privacy-related concerns may preclude the sharing of video recordings and thus remove the rich multimodal context that humans recruit to communicate. Minimizing the risk of identity exposure while preserving critical behavioral information would maximize utility of public resources (e.g., research grants) and time invested in audio–visual research. Here we present an open-source computer vision tool that masks the identities of humans while maintaining rich information about communicative body movements. Furthermore, this masking tool can be easily applied to many videos, leveraging computational tools to augment the reproducibility and accessibility of behavioral research. The tool is designed for researchers and practitioners engaged in kinematic and affective research. Application areas include teaching/education, communication and human movement research, CCTV, and legal contexts.Additional information
setup and usage -
Pearson, L., & Pouw, W. (2022). Gesture–vocal coupling in Karnatak music performance: A neuro–bodily distributed aesthetic entanglement. Annals of the New York Academy of Sciences, 1515(1), 219-236. doi:10.1111/nyas.14806.
Abstract
In many musical styles, vocalists manually gesture while they sing. Coupling between gesture kinematics and vocalization has been examined in speech contexts, but it is an open question how these couple in music making. We examine this in a corpus of South Indian, Karnatak vocal music that includes motion-capture data. Through peak magnitude analysis (linear mixed regression) and continuous time-series analyses (generalized additive modeling), we assessed whether vocal trajectories around peaks in vertical velocity, speed, or acceleration were coupling with changes in vocal acoustics (namely, F0 and amplitude). Kinematic coupling was stronger for F0 change versus amplitude, pointing to F0's musical significance. Acceleration was the most predictive for F0 change and had the most reliable magnitude coupling, showing a one-third power relation. That acceleration, rather than other kinematics, is maximally predictive for vocalization is interesting because acceleration entails force transfers onto the body. As a theoretical contribution, we argue that gesturing in musical contexts should be understood in relation to the physical connections between gesturing and vocal production that are brought into harmony with the vocalists’ (enculturated) performance goals. Gesture–vocal coupling should, therefore, be viewed as a neuro–bodily distributed aesthetic entanglement.Additional information
tables -
Pouw, W., & Holler, J. (2022). Timing in conversation is dynamically adjusted turn by turn in dyadic telephone conversations. Cognition, 222: 105015. doi:10.1016/j.cognition.2022.105015.
Abstract
Conversational turn taking in humans involves incredibly rapid responding. The timing mechanisms underpinning such responses have been heavily debated, including questions such as who is doing the timing. Similar to findings on rhythmic tapping to a metronome, we show that floor transfer offsets (FTOs) in telephone conversations are serially dependent, such that FTOs are lag-1 negatively autocorrelated. Finding this serial dependence on a turn-by-turn basis (lag-1) rather than on the basis of two or more turns, suggests a counter-adjustment mechanism operating at the level of the dyad in FTOs during telephone conversations, rather than a more individualistic self-adjustment within speakers. This finding, if replicated, has major implications for models describing turn taking, and confirms the joint, dyadic nature of human conversational dynamics. Future research is needed to see how pervasive serial dependencies in FTOs are, such as for example in richer communicative face-to-face contexts where visual signals affect conversational timing. -
Pouw, W., & Dixon, J. A. (2022). What you hear and see specifies the perception of a limb-respiratory-vocal act. Proceedings of the Royal Society B: Biological Sciences, 289(1979): 20221026. doi:10.1098/rspb.2022.1026.
-
Pouw, W., Harrison, S. J., & Dixon, J. A. (2022). The importance of visual control and biomechanics in the regulation of gesture-speech synchrony for an individual deprived of proprioceptive feedback of body position. Scientific Reports, 12: 14775. doi:10.1038/s41598-022-18300-x.
Abstract
Do communicative actions such as gestures fundamentally differ in their control mechanisms from other actions? Evidence for such fundamental differences comes from a classic gesture-speech coordination experiment performed with a person (IW) with deafferentation (McNeill, 2005). Although IW has lost both his primary source of information about body position (i.e., proprioception) and discriminative touch from the neck down, his gesture-speech coordination has been reported to be largely unaffected, even if his vision is blocked. This is surprising because, without vision, his object-directed actions almost completely break down. We examine the hypothesis that IW’s gesture-speech coordination is supported by the biomechanical effects of gesturing on head posture and speech. We find that when vision is blocked, there are micro-scale increases in gesture-speech timing variability, consistent with IW’s reported experience that gesturing is difficult without vision. Supporting the hypothesis that IW exploits biomechanical consequences of the act of gesturing, we find that: (1) gestures with larger physical impulses co-occur with greater head movement, (2) gesture-speech synchrony relates to larger gesture-concurrent head movements (i.e. for bimanual gestures), (3) when vision is blocked, gestures generate more physical impulse, and (4) moments of acoustic prominence couple more with peaks of physical impulse when vision is blocked. It can be concluded that IW’s gesturing ability is not based on a specialized language-based feedforward control as originally concluded from previous research, but is still dependent on a varied means of recurrent feedback from the body.Additional information
supplementary tables -
Pouw, W., & Fuchs, S. (2022). Origins of vocal-entangled gesture. Neuroscience and Biobehavioral Reviews, 141: 104836. doi:10.1016/j.neubiorev.2022.104836.
Abstract
Gestures during speaking are typically understood in a representational framework: they represent absent or distal states of affairs by means of pointing, resemblance, or symbolic replacement. However, humans also gesture along with the rhythm of speaking, which is amenable to a non-representational perspective. Such a perspective centers on the phenomenon of vocal-entangled gestures and builds on evidence showing that when an upper limb with a certain mass decelerates/accelerates sufficiently, it yields impulses on the body that cascade in various ways into the respiratory–vocal system. It entails a physical entanglement between body motions, respiration, and vocal activities. It is shown that vocal-entangled gestures are realized in infant vocal–motor babbling before any representational use of gesture develops. Similarly, an overview is given of vocal-entangled processes in non-human animals. They can frequently be found in rats, bats, birds, and a range of other species that developed even earlier in the phylogenetic tree. Thus, the origins of human gesture lie in biomechanics, emerging early in ontogeny and running deep in phylogeny. -
Rasenberg, M., Pouw, W., Özyürek, A., & Dingemanse, M. (2022). The multimodal nature of communicative efficiency in social interaction. Scientific Reports, 12: 19111. doi:10.1038/s41598-022-22883-w.
Abstract
How does communicative efficiency shape language use? We approach this question by studying it at the level of the dyad, and in terms of multimodal utterances. We investigate whether and how people minimize their joint speech and gesture efforts in face-to-face interactions, using linguistic and kinematic analyses. We zoom in on other-initiated repair—a conversational microcosm where people coordinate their utterances to solve problems with perceiving or understanding. We find that efforts in the spoken and gestural modalities are wielded in parallel across repair turns of different types, and that people repair conversational problems in the most cost-efficient way possible, minimizing the joint multimodal effort for the dyad as a whole. These results are in line with the principle of least collaborative effort in speech and with the reduction of joint costs in non-linguistic joint actions. The results extend our understanding of those coefficiency principles by revealing that they pertain to multimodal utterance design.Additional information
Data and analysis scripts -
Brown, A. R., Pouw, W., Brentari, D., & Goldin-Meadow, S. (2021). People are less susceptible to illusion when they use their hands to communicate rather than estimate. Psychological Science, 32, 1227-1237. doi:10.1177/0956797621991552.
Abstract
When we use our hands to estimate the length of a stick in the Müller-Lyer illusion, we are highly susceptible to the illusion. But when we prepare to act on sticks under the same conditions, we are significantly less susceptible. Here, we asked whether people are susceptible to illusion when they use their hands not to act on objects but to describe them in spontaneous co-speech gestures or conventional sign languages of the deaf. Thirty-two English speakers and 13 American Sign Language signers used their hands to act on, estimate the length of, and describe sticks eliciting the Müller-Lyer illusion. For both gesture and sign, the magnitude of illusion in the description task was smaller than the magnitude of illusion in the estimation task and not different from the magnitude of illusion in the action task. The mechanisms responsible for producing gesture in speech and sign thus appear to operate not on percepts involved in estimation but on percepts derived from the way we act on objects. -
Pouw, W., Dingemanse, M., Motamedi, Y., & Ozyurek, A. (2021). A systematic investigation of gesture kinematics in evolving manual languages in the lab. Cognitive Science, 45(7): e13014. doi:10.1111/cogs.13014.
Abstract
Silent gestures consist of complex multi-articulatory movements but are now primarily studied through categorical coding of the referential gesture content. The relation of categorical linguistic content with continuous kinematics is therefore poorly understood. Here, we reanalyzed the video data from a gestural evolution experiment (Motamedi, Schouwstra, Smith, Culbertson, & Kirby, 2019), which showed increases in the systematicity of gesture content over time. We applied computer vision techniques to quantify the kinematics of the original data. Our kinematic analyses demonstrated that gestures become more efficient and less complex in their kinematics over generations of learners. We further detect the systematicity of gesture form on the level of thegesture kinematic interrelations, which directly scales with the systematicity obtained on semantic coding of the gestures. Thus, from continuous kinematics alone, we can tap into linguistic aspects that were previously only approachable through categorical coding of meaning. Finally, going beyond issues of systematicity, we show how unique gesture kinematic dialects emerged over generations as isolated chains of participants gradually diverged over iterations from other chains. We, thereby, conclude that gestures can come to embody the linguistic system at the level of interrelationships between communicative tokens, which should calibrate our theories about form and linguistic content. -
Pouw, W., Wit, J., Bögels, S., Rasenberg, M., Milivojevic, B., & Ozyurek, A. (2021). Semantically related gestures move alike: Towards a distributional semantics of gesture kinematics. In V. G. Duffy (
Ed. ), Digital human modeling and applications in health, safety, ergonomics and risk management. human body, motion and behavior:12th International Conference, DHM 2021, Held as Part of the 23rd HCI International Conference, HCII 2021 (pp. 269-287). Berlin: Springer. doi:10.1007/978-3-030-77817-0_20. -
Pouw, W., Proksch, S., Drijvers, L., Gamba, M., Holler, J., Kello, C., Schaefer, R. S., & Wiggins, G. A. (2021). Multilevel rhythms in multimodal communication. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 376: 20200334. doi:10.1098/rstb.2020.0334.
Abstract
It is now widely accepted that the brunt of animal communication is conducted via several modalities, e.g. acoustic and visual, either simultaneously or sequentially. This is a laudable multimodal turn relative to traditional accounts of temporal aspects of animal communication which have focused on a single modality at a time. However, the fields that are currently contributing to the study of multimodal communication are highly varied, and still largely disconnected given their sole focus on a particular level of description or their particular concern with human or non-human animals. Here, we provide an integrative overview of converging findings that show how multimodal processes occurring at neural, bodily, as well as social interactional levels each contribute uniquely to the complex rhythms that characterize communication in human and non-human animals. Though we address findings for each of these levels independently, we conclude that the most important challenge in this field is to identify how processes at these different levels connect. -
Pouw, W., De Jonge-Hoekstra, L., Harrison, S. J., Paxton, A., & Dixon, J. A. (2021). Gesture-speech physics in fluent speech and rhythmic upper limb movements. Annals of the New York Academy of Sciences, 1491(1), 89-105. doi:10.1111/nyas.14532.
Abstract
Communicative hand gestures are often coordinated with prosodic aspects of speech, and salient moments of gestural movement (e.g., quick changes in speed) often co-occur with salient moments in speech (e.g., near peaks in fundamental frequency and intensity). A common understanding is that such gesture and speech coordination is culturally and cognitively acquired, rather than having a biological basis. Recently, however, the biomechanical physical coupling of arm movements to speech movements has been identified as a potentially important factor in understanding the emergence of gesture-speech coordination. Specifically, in the case of steady-state vocalization and mono-syllable utterances, forces produced during gesturing are transferred onto the tensioned body, leading to changes in respiratory-related activity and thereby affecting vocalization F0 and intensity. In the current experiment (N = 37), we extend this previous line of work to show that gesture-speech physics impacts fluent speech, too. Compared with non-movement, participants who are producing fluent self-formulated speech, while rhythmically moving their limbs, demonstrate heightened F0 and amplitude envelope, and such effects are more pronounced for higher-impulse arm versus lower-impulse wrist movement. We replicate that acoustic peaks arise especially during moments of peak-impulse (i.e., the beat) of the movement, namely around deceleration phases of the movement. Finally, higher deceleration rates of higher-mass arm movements were related to higher peaks in acoustics. These results confirm a role for physical-impulses of gesture affecting the speech system. We discuss the implications of
gesture-speech physics for understanding of the emergence of communicative gesture, both ontogenetically and phylogenetically.Additional information
data and analyses -
Dowell, C., Hajnal, A., Pouw, W., & Wagman, J. B. (2020). Visual and haptic perception of affordances of feelies. Perception, 49(9), 905-925. doi:10.1177/0301006620946532.
Abstract
Most objects have well-defined affordances. Investigating perception of affordances of objects that were not created for a specific purpose would provide insight into how affordances are perceived. In addition, comparison of perception of affordances for such objects across different exploratory modalities (visual vs. haptic) would offer a strong test of the lawfulness of information about affordances (i.e., the invariance of such information over transformation). Along these lines, “feelies”— objects created by Gibson with no obvious function and unlike any common object—could shed light on the processes underlying affordance perception. This study showed that when observers reported potential uses for feelies, modality significantly influenced what kind of affordances were perceived. Specifically, visual exploration resulted in more noun labels (e.g., “toy”) than haptic exploration which resulted in more verb labels (i.e., “throw”). These results suggested that overlapping, but distinct classes of action possibilities are perceivable using vision and haptics. Semantic network analyses revealed that visual exploration resulted in object-oriented responses focused on object identification, whereas haptic exploration resulted in action-oriented responses. Cluster analyses confirmed these results. Affordance labels produced in the visual condition were more consistent, used fewer descriptors, were less diverse, but more novel than in the haptic condition. -
Eielts, C., Pouw, W., Ouwehand, K., Van Gog, T., Zwaan, R. A., & Paas, F. (2020). Co-thought gesturing supports more complex problem solving in subjects with lower visual working-memory capacity. Psychological Research, 84, 502-513. doi:10.1007/s00426-018-1065-9.
Abstract
During silent problem solving, hand gestures arise that have no communicative intent. The role of such co-thought gestures in
cognition has been understudied in cognitive research as compared to co-speech gestures. We investigated whether gesticulation
during silent problem solving supported subsequent performance in a Tower of Hanoi problem-solving task, in relation
to visual working-memory capacity and task complexity. Seventy-six participants were assigned to either an instructed gesture
condition or a condition that allowed them to gesture, but without explicit instructions to do so. This resulted in three
gesture groups: (1) non-gesturing; (2) spontaneous gesturing; (3) instructed gesturing. In line with the embedded/extended
cognition perspective on gesture, gesturing benefited complex problem-solving performance for participants with a lower
visual working-memory capacity, but not for participants with a lower spatial working-memory capacity. -
Hostetter, A. B., Pouw, W., & Wakefield, E. M. (2020). Learning from gesture and action: An investigation of memory for where objects went and how they got there. Cognitive Science, 44(9): e12889. doi:10.1111/cogs.12889.
Abstract
Speakers often use gesture to demonstrate how to perform actions—for example, they might show how to open the top of a jar by making a twisting motion above the jar. Yet it is unclear whether listeners learn as much from seeing such gestures as they learn from seeing actions that physically change the position of objects (i.e., actually opening the jar). Here, we examined participants' implicit and explicit understanding about a series of movements that demonstrated how to move a set of objects. The movements were either shown with actions that physically relocated each object or with gestures that represented the relocation without touching the objects. Further, the end location that was indicated for each object covaried with whether the object was grasped with one or two hands. We found that memory for the end location of each object was better after seeing the physical relocation of the objects, that is, after seeing action, than after seeing gesture, regardless of whether speech was absent (Experiment 1) or present (Experiment 2). However, gesture and action built similar implicit understanding of how a particular handgrasp corresponded with a particular end location. Although gestures miss the benefit of showing the end state of objects that have been acted upon, the data show that gestures are as good as action in building knowledge of how to perform an action. -
Pouw, W., Paxton, A., Harrison, S. J., & Dixon, J. A. (2020). Reply to Ravignani and Kotz: Physical impulses from upper-limb movements impact the respiratory–vocal system. Proceedings of the National Academy of Sciences of the United States of America, 117(38), 23225-23226. doi:10.1073/pnas.2015452117.
Additional information
This article has a letter -
Pouw, W., Paxton, A., Harrison, S. J., & Dixon, J. A. (2020). Acoustic information about upper limb movement in voicing. Proceedings of the National Academy of Sciences of the United States of America, 117(21), 11364-11367. doi:10.1073/pnas.2004163117.
Abstract
We show that the human voice has complex acoustic qualities that are directly coupled to peripheral musculoskeletal tensioning of the body, such as subtle wrist movements. In this study, human vocalizers produced a steady-state vocalization while rhythmically moving the wrist or the arm at different tempos. Although listeners could only hear but not see the vocalizer, they were able to completely synchronize their own rhythmic wrist or arm movement with the movement of the vocalizer which they perceived in the voice acoustics. This study corroborates
recent evidence suggesting that the human voice is constrained by bodily tensioning affecting the respiratory-vocal system. The current results show that the human voice contains a bodily imprint that is directly informative for the interpersonal perception of another’s dynamic physical states.Additional information
This article has a letter by Ravignani and Kotz This article has a reply to Ravignani and Kotz -
Pouw, W., Wassenburg, S. I., Hostetter, A. B., De Koning, B. B., & Paas, F. (2020). Does gesture strengthen sensorimotor knowledge of objects? The case of the size-weight illusion. Psychological Research, 84(4), 966-980. doi:10.1007/s00426-018-1128-y.
Abstract
Co-speech gestures have been proposed to strengthen sensorimotor knowledge related to objects’ weight and manipulability.
This pre-registered study (https ://www.osf.io/9uh6q /) was designed to explore how gestures affect memory for sensorimotor
information through the application of the visual-haptic size-weight illusion (i.e., objects weigh the same, but are experienced
as different in weight). With this paradigm, a discrepancy can be induced between participants’ conscious illusory
perception of objects’ weight and their implicit sensorimotor knowledge (i.e., veridical motor coordination). Depending on
whether gestures reflect and strengthen either of these types of knowledge, gestures may respectively decrease or increase
the magnitude of the size-weight illusion. Participants (N = 159) practiced a problem-solving task with small and large
objects that were designed to induce a size-weight illusion, and then explained the task with or without co-speech gesture
or completed a control task. Afterwards, participants judged the heaviness of objects from memory and then while holding
them. Confirmatory analyses revealed an inverted size-weight illusion based on heaviness judgments from memory and we
found gesturing did not affect judgments. However, exploratory analyses showed reliable correlations between participants’
heaviness judgments from memory and (a) the number of gestures produced that simulated actions, and (b) the kinematics of
the lifting phases of those gestures. These findings suggest that gestures emerge as sensorimotor imaginings that are governed
by the agent’s conscious renderings about the actions they describe, rather than implicit motor routines. -
Pouw, W., Harrison, S. J., Esteve-Gibert, N., & Dixon, J. A. (2020). Energy flows in gesture-speech physics: The respiratory-vocal system and its coupling with hand gestures. The Journal of the Acoustical Society of America, 148(3): 1231. doi:10.1121/10.0001730.
Abstract
Expressive moments in communicative hand gestures often align with emphatic stress in speech. It has recently been found that acoustic markers of emphatic stress arise naturally during steady-state phonation when upper-limb movements impart physical impulses on the body, most likely affecting acoustics via respiratory activity. In this confirmatory study, participants (N = 29) repeatedly uttered consonant-vowel (/pa/) mono-syllables while moving in particular phase relations with speech, or not moving the upper limbs. This study shows that respiration-related activity is affected by (especially high-impulse) gesturing when vocalizations occur near peaks in physical impulse. This study further shows that gesture-induced moments of bodily impulses increase the amplitude envelope of speech, while not similarly affecting the Fundamental Frequency (F0). Finally, tight relations between respiration-related activity and vocalization were observed, even in the absence of movement, but even more so when upper-limb movement is present. The current findings expand a developing line of research showing that speech is modulated by functional biomechanical linkages between hand gestures and the respiratory system. This identification of gesture-speech biomechanics promises to provide an alternative phylogenetic, ontogenetic, and mechanistic explanatory route of why communicative upper limb movements co-occur with speech in humans.
ACKNOWLEDGMENTSAdditional information
Link to Preprint on OSF -
Pouw, W., & Dixon, J. A. (2020). Gesture networks: Introducing dynamic time warping and network analysis for the kinematic study of gesture ensembles. Discourse Processes, 57(4), 301-319. doi:10.1080/0163853X.2019.1678967.
Abstract
We introduce applications of established methods in time-series and network
analysis that we jointly apply here for the kinematic study of gesture
ensembles. We define a gesture ensemble as the set of gestures produced
during discourse by a single person or a group of persons. Here we are
interested in how gestures kinematically relate to one another. We use
a bivariate time-series analysis called dynamic time warping to assess how
similar each gesture is to other gestures in the ensemble in terms of their
velocity profiles (as well as studying multivariate cases with gesture velocity
and speech amplitude envelope profiles). By relating each gesture event to
all other gesture events produced in the ensemble, we obtain a weighted
matrix that essentially represents a network of similarity relationships. We
can therefore apply network analysis that can gauge, for example, how
diverse or coherent certain gestures are with respect to the gesture ensemble.
We believe these analyses promise to be of great value for gesture
studies, as we can come to understand how low-level gesture features
(kinematics of gesture) relate to the higher-order organizational structures
present at the level of discourse.Additional information
Open Data OSF -
Pouw, W., Harrison, S. J., & Dixon, J. A. (2020). Gesture–speech physics: The biomechanical basis for the emergence of gesture–speech synchrony. Journal of Experimental Psychology: General, 149(2), 391-404. doi:10.1037/xge0000646.
Abstract
The phenomenon of gesture–speech synchrony involves tight coupling of prosodic contrasts in gesture
movement (e.g., peak velocity) and speech (e.g., peaks in fundamental frequency; F0). Gesture–speech
synchrony has been understood as completely governed by sophisticated neural-cognitive mechanisms.
However, gesture–speech synchrony may have its original basis in the resonating forces that travel through the
body. In the current preregistered study, movements with high physical impact affected phonation in line with
gesture–speech synchrony as observed in natural contexts. Rhythmic beating of the arms entrained phonation
acoustics (F0 and the amplitude envelope). Such effects were absent for a condition with low-impetus
movements (wrist movements) and a condition without movement. Further, movement–phonation synchrony
was more pronounced when participants were standing as opposed to sitting, indicating a mediating role for
postural stability. We conclude that gesture–speech synchrony has a biomechanical basis, which will have
implications for our cognitive, ontogenetic, and phylogenetic understanding of multimodal language.Additional information
Data availability analysis scripts and pre-registration -
Pouw, W., Trujillo, J. P., & Dixon, J. A. (2020). The quantification of gesture–speech synchrony: A tutorial and validation of multimodal data acquisition using device-based and video-based motion tracking. Behavior Research Methods, 52, 723-740. doi:10.3758/s13428-019-01271-9.
Abstract
There is increasing evidence that hand gestures and speech synchronize their activity on multiple dimensions and timescales. For example, gesture’s kinematic peaks (e.g., maximum speed) are coupled with prosodic markers in speech. Such coupling operates on very short timescales at the level of syllables (200 ms), and therefore requires high-resolution measurement of gesture kinematics and speech acoustics. High-resolution speech analysis is common for gesture studies, given that field’s classic ties with (psycho)linguistics. However, the field has lagged behind in the objective study of gesture kinematics (e.g., as compared to research on instrumental action). Often kinematic peaks in gesture are measured by eye, where a “moment of maximum effort” is determined by several raters. In the present article, we provide a tutorial on more efficient methods to quantify the temporal properties of gesture kinematics, in which we focus on common challenges and possible solutions that come with the complexities of studying multimodal language. We further introduce and compare, using an actual gesture dataset (392 gesture events), the performance of two video-based motion-tracking methods (deep learning vs. pixel change) against a high-performance wired motion-tracking system (Polhemus Liberty). We show that the videography methods perform well in the temporal estimation of kinematic peaks, and thus provide a cheap alternative to expensive motion-tracking systems. We hope that the present article incites gesture researchers to embark on the widespread objective study of gesture kinematics and their relation to speech. -
Kamermans, K. L., Pouw, W., Mast, F. W., & Paas, F. (2019). Reinterpretation in visual imagery is possible without visual cues: A validation of previous research. Psychological Research, 83(6), 1237-1250. doi:10.1007/s00426-017-0956-5.
Abstract
Is visual reinterpretation of bistable figures (e.g., duck/rabbit figure) in visual imagery possible? Current consensus suggests that it is in principle possible because of converging evidence of quasi-pictorial functioning of visual imagery. Yet, studies that have directly tested and found evidence for reinterpretation in visual imagery, allow for the possibility that reinterpretation was already achieved during memorization of the figure(s). One study resolved this issue, providing evidence for reinterpretation in visual imagery (Mast and Kosslyn, Cognition 86:57-70, 2002). However, participants in that study performed reinterpretations with aid of visual cues. Hence, reinterpretation was not performed with mental imagery alone. Therefore, in this study we assessed the possibility of reinterpretation without visual support. We further explored the possible role of haptic cues to assess the multimodal nature of mental imagery. Fifty-three participants were consecutively presented three to be remembered bistable 2-D figures (reinterpretable when rotated 180 degrees), two of which were visually inspected and one was explored hapticly. After memorization of the figures, a visually bistable exemplar figure was presented to ensure understanding of the concept of visual bistability. During recall, 11 participants (out of 36; 30.6%) who did not spot bistability during memorization successfully performed reinterpretations when instructed to mentally rotate their visual image, but additional haptic cues during mental imagery did not inflate reinterpretation ability. This study validates previous findings that reinterpretation in visual imagery is possible. -
Kamermans, K. L., Pouw, W., Fassi, L., Aslanidou, A., Paas, F., & Hostetter, A. B. (2019). The role of gesture as simulated action in reinterpretation of mental imagery. Acta Psychologica, 197, 131-142. doi:10.1016/j.actpsy.2019.05.004.
Abstract
In two experiments, we examined the role of gesture in reinterpreting a mental image. In Experiment 1, we found that participants gestured more about a figure they had learned through manual exploration than about a figure they had learned through vision. This supports claims that gestures emerge from the activation of perception-relevant actions during mental imagery. In Experiment 2, we investigated whether such gestures have a causal role in affecting the quality of mental imagery. Participants were randomly assigned to gesture, not gesture, or engage in a manual interference task as they attempted to reinterpret a figure they had learned through manual exploration. We found that manual interference significantly impaired participants' success on the task. Taken together, these results suggest that gestures reflect mental imaginings of interactions with a mental image and that these imaginings are critically important for mental manipulation and reinterpretation of that image. However, our results suggest that enacting the imagined movements in gesture is not critically important on this particular task. -
Pouw, W., Paxton, A., Harrison, S. J., & Dixon, J. A. (2019). Acoustic specification of upper limb movement in voicing. In A. Grimminger (
Ed. ), Proceedings of the 6th Gesture and Speech in Interaction – GESPIN 6 (pp. 68-74). Paderborn: Universitaetsbibliothek Paderborn. doi:10.17619/UNIPB/1-812.Additional information
https://osf.io/9843h/ -
Pouw, W., & Dixon, J. A. (2019). Entrainment and modulation of gesture-speech synchrony under delayed auditory feedback. Cognitive Science, 43(3): e12721. doi:10.1111/cogs.12721.
Abstract
Gesture–speech synchrony re-stabilizes when hand movement or speech is disrupted by a delayed
feedback manipulation, suggesting strong bidirectional coupling between gesture and speech. Yet it
has also been argued from case studies in perceptual–motor pathology that hand gestures are a special
kind of action that does not require closed-loop re-afferent feedback to maintain synchrony with
speech. In the current pre-registered within-subject study, we used motion tracking to conceptually
replicate McNeill’s (1992) classic study on gesture–speech synchrony under normal and 150 ms
delayed auditory feedback of speech conditions (NO DAF vs. DAF). Consistent with, and extending
McNeill’s original results, we obtain evidence that (a) gesture-speech synchrony is more stable
under DAF versus NO DAF (i.e., increased coupling effect), (b) that gesture and speech variably
entrain to the external auditory delay as indicated by a consistent shift in gesture-speech synchrony
offsets (i.e., entrainment effect), and (c) that the coupling effect and the entrainment effect are codependent.
We suggest, therefore, that gesture–speech synchrony provides a way for the cognitive
system to stabilize rhythmic activity under interfering conditions.Additional information
https://osf.io/pcde3/ -
Pouw, W., & Dixon, J. A. (2019). Quantifying gesture-speech synchrony. In A. Grimminger (
Ed. ), Proceedings of the 6th Gesture and Speech in Interaction – GESPIN 6 (pp. 75-80). Paderborn: Universitaetsbibliothek Paderborn. doi:10.17619/UNIPB/1-812.Abstract
Spontaneously occurring speech is often seamlessly accompanied by hand gestures. Detailed
observations of video data suggest that speech and gesture are tightly synchronized in time,
consistent with a dynamic interplay between body and mind. However, spontaneous gesturespeech
synchrony has rarely been objectively quantified beyond analyses of video data, which
do not allow for identification of kinematic properties of gestures. Consequently, the point in
gesture which is held to couple with speech, the so-called moment of “maximum effort”, has
been variably equated with the peak velocity, peak acceleration, peak deceleration, or the onset
of the gesture. In the current exploratory report, we provide novel evidence from motiontracking
and acoustic data that peak velocity is closely aligned, and shortly leads, the peak pitch
(F0) of speechAdditional information
https://osf.io/9843h/ -
Pouw, W., Rop, G., De Koning, B., & Paas, F. (2019). The cognitive basis for the split-attention effect. Journal of Experimental Psychology: General, 148(11), 2058-2075. doi:10.1037/xge0000578.
Abstract
The split-attention effect entails that learning from spatially separated, but mutually referring information
sources (e.g., text and picture), is less effective than learning from the equivalent spatially integrated
sources. According to cognitive load theory, impaired learning is caused by the working memory load
imposed by the need to distribute attention between the information sources and mentally integrate them.
In this study, we directly tested whether the split-attention effect is caused by spatial separation per se.
Spatial distance was varied in basic cognitive tasks involving pictures (Experiment 1) and text–picture
combinations (Experiment 2; preregistered study), and in more ecologically valid learning materials
(Experiment 3). Experiment 1 showed that having to integrate two pictorial stimuli at greater distances
diminished performance on a secondary visual working memory task, but did not lead to slower
integration. When participants had to integrate a picture and written text in Experiment 2, a greater
distance led to slower integration of the stimuli, but not to diminished performance on the secondary task.
Experiment 3 showed that presenting spatially separated (compared with integrated) textual and pictorial
information yielded fewer integrative eye movements, but this was not further exacerbated when
increasing spatial distance even further. This effect on learning processes did not lead to differences in
learning outcomes between conditions. In conclusion, we provide evidence that larger distances between
spatially separated information sources influence learning processes, but that spatial separation on its
own is not likely to be the only, nor a sufficient, condition for impacting learning outcomes.Files private
Request files -
Pouw, W., Van Gog, T., Zwaan, R. A., Agostinho, S., & Paas, F. (2018). Co-thought gestures in children's mental problem solving: Prevalence and effects on subsequent performance. Applied Cognitive Psychology, 32(1), 66-80. doi:10.1002/acp.3380.
Abstract
Co-thought gestures are understudied as compared to co-speech gestures yet, may provide insight into cognitive functions of gestures that are independent of speech processes. A recent study with adults showed that co-thought gesticulation occurred spontaneously during mental preparation of problem solving. Moreover, co-thought gesturing (either spontaneous or instructed) during mental preparation was effective for subsequent solving of the Tower of Hanoi under conditions of high cognitive load (i.e., when visual working memory capacity was limited and when the task was more difficult). In this preregistered study (), we investigated whether co-thought gestures would also spontaneously occur and would aid problem-solving processes in children (N=74; 8-12years old) under high load conditions. Although children also spontaneously used co-thought gestures during mental problem solving, this did not aid their subsequent performance when physically solving the problem. If these null results are on track, co-thought gesture effects may be different in adults and children.Files private
Request files -
Pouw, W., van Gog, T., Zwaan, R. A., & Paas, F. (2017). Are gesture and speech mismatches produced by an integrated gesture-speech system? A more dynamically embodied perspective is needed for understanding gesture-related learning. Behavioral and Brain Sciences, 40: e68. doi:10.1017/S0140525X15003039.
Abstract
We observe a tension in the target article as it stresses an integrated gesture-speech system that can nevertheless consist of contradictory representational states, which are reflected by mismatches in gesture and speech or sign. Beyond problems of coherence, this prevents furthering our understanding of gesture-related learning. As a possible antidote, we invite a more dynamically embodied perspective to the stage. -
Pouw, W., Aslanidou, A., Kamermans, K. L., & Paas, F. (2017). Is ambiguity detection in haptic imagery possible? Evidence for Enactive imaginings. In G. Gunzelmann, A. Howes, T. Tenbrink, & E. Davelaar (
Eds. ), Proceedings of the 39th Annual Conference of the Cognitive Science Society (CogSci 2017) (pp. 2925-2930). Austin, TX: Cognitive Science Society.Abstract
A classic discussion about visual imagery is whether it affords reinterpretation, like discovering two interpretations in the duck/rabbit illustration. Recent findings converge on reinterpretation being possible in visual imagery, suggesting functional equivalence with pictorial representations. However, it is unclear whether such reinterpretations are necessarily a visual-pictorial achievement. To assess this, 68 participants were briefly presented 2-d ambiguous figures. One figure was presented visually, the other via manual touch alone. Afterwards participants mentally rotated the memorized figures as to discover a novel interpretation. A portion (20.6%) of the participants detected a novel interpretation in visual imagery, replicating previous research. Strikingly, 23.6% of participants were able to reinterpret figures they had only felt. That reinterpretation truly involved haptic processes was further supported, as some participants performed co-thought gestures on an imagined figure during retrieval. These results are promising for further development of an Enactivist approach to imagination. -
Pouw, W., Van Gog, T., Zwaan, R. A., & Paas, F. (2016). Augmenting instructional animations with a body analogy to help children learn about physical systems. Frontiers in Psychology, 7: 860. doi:10.3389/fpsyg.2016.00860.
Abstract
We investigated whether augmenting instructional animations with a body analogy (BA) would improve 10- to 13-year-old children’s learning about class-1 levers. Children with a lower level of general math skill who learned with an instructional animation that provided a BA of the physical system, showed higher accuracy on a lever problem-solving reaction time task than children studying the instructional animation without this BA. Additionally, learning with a BA led to a higher speed–accuracy trade-off during the transfer task for children with a lower math skill, which provided additional evidence that especially this group is likely to be affected by learning with a BA. However, overall accuracy and solving speed on the transfer task was not affected by learning with or without this BA. These results suggest that providing children with a BA during animation study provides a stepping-stone for understanding mechanical principles of a physical system, which may prove useful for instructional designers. Yet, because the BA does not seem effective for all children, nor for all tasks, the degree of effectiveness of body analogies should be studied further. Future research, we conclude, should be more sensitive to the necessary degree of analogous mapping between the body and physical systems, and whether this mapping is effective for reasoning about more complex instantiations of such physical systems. -
Pouw, W., Eielts, C., Van Gog, T., Zwaan, R. A., & Paas, F. (2016). Does (non‐)meaningful sensori‐motor engagement promote learning with animated physical systems? Mind, Brain and Education, 10(2), 91-104. doi:10.1111/mbe.12105.
Abstract
Previous research indicates that sensori‐motor experience with physical systems can have a positive effect on learning. However, it is not clear whether this effect is caused by mere bodily engagement or the intrinsically meaningful information that such interaction affords in performing the learning task. We investigated (N = 74), through the use of a Wii Balance Board, whether different forms of physical engagement that was either meaningfully, non‐meaningfully, or minimally related to the learning content would be beneficial (or detrimental) to learning about the workings of seesaws from instructional animations. The results were inconclusive, indicating that motoric competency on lever problem solving did not significantly differ between conditions, nor were response speed and transfer performance affected. These findings suggest that adult's implicit and explicit knowledge about physical systems is stable and not easily affected by (contradictory) sensori‐motor experiences. Implications for embodied learning are discussed. -
Pouw, W., & Hostetter, A. B. (2016). Gesture as predictive action. Reti, Saperi, Linguaggi: Italian Journal of Cognitive Sciences, 3, 57-80. doi:10.12832/83918.
Abstract
Two broad approaches have dominated the literature on the production of speech-accompanying gestures. On the one hand, there are approaches that aim to explain the origin of gestures by specifying the mental processes that give rise to them. On the other, there are approaches that aim to explain the cognitive function that gestures have for the gesturer or the listener. In the present paper we aim to reconcile both approaches in one single perspective that is informed by a recent sea change in cognitive science, namely, Predictive Processing Perspectives (PPP; Clark 2013b; 2015). We start with the idea put forth by the Gesture as Simulated Action (GSA) framework (Hostetter, Alibali 2008). Under this view, the mental processes that give rise to gesture are re-enactments of sensori-motor experiences (i.e., simulated actions). We show that such anticipatory sensori-motor states and the constraints put forth by the GSA framework can be understood as top-down kinesthetic predictions that function in a broader predictive machinery as proposed by PPP. By establishing this alignment, we aim to show how gestures come to fulfill a genuine cognitive function above and beyond the mental processes that give rise to gesture. -
Pouw, W., Myrto-Foteini, M., Van Gog, T., & Paas, F. (2016). Gesturing during mental problem solving reduces eye movements, especially for individuals with lower visual working memory capacity. Cognitive Processing, 17, 269-277. doi:10.1007/s10339-016-0757-6.
Abstract
Non-communicative hand gestures have been found to benefit problem-solving performance. These gestures seem to compensate for limited internal cognitive capacities, such as visual working memory capacity. Yet, it is not clear how gestures might perform this cognitive function. One hypothesis is that gesturing is a means to spatially index mental simulations, thereby reducing the need for visually projecting the mental simulation onto the visual presentation of the task. If that hypothesis is correct, less eye movements should be made when participants gesture during problem solving than when they do not gesture. We therefore used mobile eye tracking to investigate the effect of co-thought gesturing and visual working memory capacity on eye movements during mental solving of the Tower of Hanoi problem. Results revealed that gesturing indeed reduced the number of eye movements (lower saccade counts), especially for participants with a relatively lower visual working memory capacity. Subsequent problem-solving performance was not affected by having (not) gestured during the mental solving phase. The current findings suggest that our understanding of gestures in problem solving could be improved by taking into account eye movements during gesturing. -
Van Wermeskerken, M., Fijan, N., Eielts, C., & Pouw, W. (2016). Observation of depictive versus tracing gestures selectively aids verbal versus visual–spatial learning in primary school children. Applied Cognitive Psychology, 30, 806-814. doi:10.1002/acp.3256.
Abstract
Previous research has established that gesture observation aids learning in children. The current study examinedwhether observation of gestures (i.e. depictive and tracing gestures) differentially affected verbal and visual–spatial retention whenlearning a route and its street names. Specifically, we explored whether children (n = 97) with lower visual and verbal working-memory capacity benefited more from observing gestures as compared with children who score higher on these traits. To thisend, 11- to 13-year-old children were presented with an instructional video of a route containing no gestures, depictive gestures,tracing gestures or both depictive and tracing gestures. Results indicated that the type of observed gesture affected performance:Observing tracing gestures or both tracing and depictive gestures increased performance on route retention, while observingdepictive gestures or both depictive and tracing gestures increased performance on street name retention. These effects werenot differentially affected by working-memory capacity -
Pouw, W., & Looren de Jong, H. (2015). Rethinking situated and embodied social psychology. Theory and Psychology, 25(4), 411-433. doi:10.1177/0959354315585661.
Abstract
This article aims to explore the scope of a Situated and Embodied Social Psychology (ESP). At first sight, social cognition seems embodied cognition par excellence. Social cognition is first and foremost a supra-individual, interactive, and dynamic process (Semin & Smith, 2013). Radical approaches in Situated/Embodied Cognitive Science (Enactivism) claim that social cognition consists in an emergent pattern of interaction between a continuously coupled organism and the (social) environment; it rejects representationalist accounts of cognition (Hutto & Myin, 2013). However, mainstream ESP (Barsalou, 1999, 2008) still takes a rather representation-friendly approach that construes embodiment in terms of specific bodily formatted representations used (activated) in social cognition. We argue that mainstream ESP suffers from vestiges of theoretical solipsism, which may be resolved by going beyond internalistic spirit that haunts mainstream ESP today. -
Pouw, W., Van Gog, T., & Paas, F. (2014). An embedded and embodied cognition review of instructional manipulatives. Educational Psychology Review, 26, 51-72. doi:10.1007/s10648-014-9255-5.
Abstract
Recent literature on learning with instructional manipulatives seems to call for a moderate view on the effects of perceptual and interactive richness of instructional manipulatives on learning. This “moderate view” holds that manipulatives’ perceptual and interactive richness may compromise learning in two ways: (1) by imposing a very high cognitive load on the learner, and (2) by hindering drawing of symbolic inferences that are supposed to play a key role in transfer (i.e., application of knowledge to new situations in the absence of instructional manipulatives). This paper presents a contrasting view. Drawing on recent insights from Embedded Embodied perspectives on cognition, it is argued that (1) perceptual and interactive richness may provide opportunities for alleviating cognitive load (Embedded Cognition), and (2) transfer of learning is not reliant on decontextualized knowledge but may draw on previous sensorimotor experiences of the kind afforded by perceptual and interactive richness of manipulatives (Embodied Cognition). By negotiating the Embedded Embodied Cognition view with the moderate view, implications for research are derived. -
Pouw, W., De Nooijer, J. A., Van Gog, T., Zwaan, R. A., & Paas, F. (2014). Toward a more embedded/extended perspective on the cognitive function of gestures. Frontiers in Psychology, 5: 359. doi:10.3389/fpsyg.2014.00359.
Abstract
Gestures are often considered to be demonstrative of the embodied nature of the mind (Hostetter and Alibali, 2008). In this article, we review current theories and research targeted at the intra-cognitive role of gestures. We ask the question how can gestures support internal cognitive processes of the gesturer? We suggest that extant theories are in a sense disembodied, because they focus solely on embodiment in terms of the sensorimotor neural precursors of gestures. As a result, current theories on the intra-cognitive role of gestures are lacking in explanatory scope to address how gestures-as-bodily-acts fulfill a cognitive function. On the basis of recent theoretical appeals that focus on the possibly embedded/extended cognitive role of gestures (Clark, 2013), we suggest that gestures are external physical tools of the cognitive system that replace and support otherwise solely internal cognitive processes. That is gestures provide the cognitive system with a stable external physical and visual presence that can provide means to think with. We show that there is a considerable amount of overlap between the way the human cognitive system has been found to use its environment, and how gestures are used during cognitive processes. Lastly, we provide several suggestions of how to investigate the embedded/extended perspective of the cognitive function of gestures. -
Van Stekelenburg, J., Anikina, N. C., Pouw, W., Petrovic, I., & Nederlof, N. (2013). From correlation to causation: The cruciality of a collectivity in the context of collective action. Journal of Social and Political Psychology, 1(1), 161-187. doi:10.5964/jspp.v1i1.38.
Abstract
This paper discusses a longitudinal field study on collective action which aims to move beyond student samples and enhance mundane realism. First we provide a historical overview of the literature on the what (i.e., antecedents of collective action) and the how (i.e., the methods employed) of the social psychology of protest. This historical overview is substantiated with meta-analytical evidence on how these antecedents and methods changed over time. After the historical overview, we provide an empirical illustration of a longitudinal field study in a natural setting―a newly-built Dutch neighbourhood. We assessed changes in informal embeddedness, efficacy, identification, emotions, and grievances over time. Between t0 and t1 the residents protested against the plan to allow a mosque to carrying out their services in a community building in the neighbourhood. We examined the antecedents of protest before [t0] and after [t1] the protests, and whether residents participated or not. We show how a larger social network functions as a catalyst in steering protest participation. Our longitudinal field study replicates basic findings from experimental and survey research. However, it also shows that one antecedent in particular, which is hard to manipulate in the lab (i.e., the size of someone’s social network), proved to be of great importance. We suggest that in overcoming our most pertinent challenge―causality―we should not only remain in our laboratories but also go out and examine real-life situations with people situated in real-life social networks. -
IJzerman, H., Gallucci, M., Pouw, W., Weiβgerber, S. C., Van Doesum, N. J., & Williams, K. D. (2012). Cold-blooded loneliness: Social exclusion leads to lower skin temperatures. Acta Psychologica, 140(3), 283-288. doi:10.1016/j.actpsy.2012.05.002.
Abstract
Being ostracized or excluded, even briefly and by strangers, is painful and threatens fundamental needs. Recent work by Zhong and Leonardelli (2008) found that excluded individuals perceive the room as cooler and that they desire warmer drinks. A perspective that many rely on in embodiment is the theoretical idea that people use metaphorical associations to understand social exclusion (see Landau, Meier, & Keefer, 2010). We suggest that people feel colder because they are colder. The results strongly support the idea that more complex metaphorical understandings of social relations are scaffolded onto literal changes in bodily temperature: Being excluded in an online ball tossing game leads to lower finger temperatures (Study 1), while the negative affect typically experienced after such social exclusion is alleviated after holding a cup of warm tea (Study 2). The authors discuss further implications for the interaction between body and social relations specifically, and for basic and cognitive systems in general.
Share this page